Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Traction forces at the cytokinetic ring regulate cell division and polyploidy in the migrating zebrafish epicardium

Abstract

Epithelial repair and regeneration are driven by collective cell migration and division. Both cellular functions involve tightly controlled mechanical events, but how physical forces regulate cell division in migrating epithelia is largely unknown. Here we show that cells dividing in the migrating zebrafish epicardium exert large cell–extracellular matrix (ECM) forces during cytokinesis. These forces point towards the division axis and are exerted through focal adhesions that connect the cytokinetic ring to the underlying ECM. When subjected to high loading rates, these cytokinetic focal adhesions prevent closure of the contractile ring, leading to multi-nucleation through cytokinetic failure. By combining a clutch model with experiments on substrates of different rigidity, ECM composition and ligand density, we show that failed cytokinesis is triggered by adhesion reinforcement downstream of increased myosin density. The mechanical interaction between the cytokinetic ring and the ECM thus provides a mechanism for the regulation of cell division and polyploidy that may have implications in regeneration and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zebrafish epicardium uses an unconventional mechanism of collective migration.
Fig. 2: Mechanics of epicardial migration.
Fig. 3: Epicardial cells exert traction forces during cytokinesis.
Fig. 4: A large number of cells are multinucleated due to cytokinetic failure.
Fig. 5: Reinforcement of CFAs leads to cytokinetic failure.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

Code availability

Code used in this Article can be made available upon request to the corresponding author.

References

  1. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  Google Scholar 

  2. Raya, Á. et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc. Natl Acad. Sci. USA 100, 11889–11895 (2003).

    Article  CAS  Google Scholar 

  3. Wang, J. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138, 3421–3430 (2011).

    Article  CAS  Google Scholar 

  4. Lien, C.-L., Harrison, M. R., Tuan, T.-L. & Starnes, V. A. Heart repair and regeneration: recent insights from zebrafish studies. Wound Repair Regen. 20, 638–646 (2012).

    Article  Google Scholar 

  5. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  Google Scholar 

  6. Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).

    Article  Google Scholar 

  7. Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599–1603 (2012).

    Article  CAS  Google Scholar 

  8. Peralta, M., González-Rosa, J. M., Marques, I. J. & Mercader, N. The epicardium in the embryonic and adult zebrafish. J. Dev. Biol. 2, 101–116 (2014).

    Article  CAS  Google Scholar 

  9. Wang, J., Cao, J., Dickson, A. L. & Poss, K. D. Epicardial regeneration is guided by cardiac outflow tract and hedgehog signalling. Nature 522, 226–230 (2015).

    Article  CAS  Google Scholar 

  10. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nat. Phys. 8, 628–634 (2012).

    Article  CAS  Google Scholar 

  11. Reffay, M. et al. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat. Cell Biol. 16, 217–223 (2014).

    Article  Google Scholar 

  12. Das, T. et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat. Cell Biol. 17, 276–287 (2015).

    Article  CAS  Google Scholar 

  13. Trepat, X. et al. Physical forces during collective cell migration. Nat. Phys. 5, 426–430 (2009).

    Article  CAS  Google Scholar 

  14. du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005).

    Article  Google Scholar 

  15. Kim, J., Rubin, N., Huang, Y., Tuan, T.-L. & Lien, C.-L. In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat. Protoc. 7, 247–255 (2012).

    Article  CAS  Google Scholar 

  16. Garcia-Puig, A. et al. Proteomics analysis of extracellular matrix remodeling during zebrafish heart regeneration. Preprint at https://www.biorxiv.org/content/10.1101/588251v1 (2019).

  17. Cao, J. et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev. Cell 42, 600–615 (2017).

    Article  CAS  Google Scholar 

  18. Bazellières, E. et al. Control of cell–cell forces and collective cell dynamics by the intercellular adhesome. Nat. Cell Biol. 17, 409–420 (2015).

    Article  Google Scholar 

  19. Brugués, A. et al. Forces driving epithelial wound healing. Nat. Phys. 10, 683–690 (2014).

    Article  Google Scholar 

  20. Kim, J. H. et al. Propulsion and navigation within the advancing monolayer sheet. Nat. Mater. 12, 856–863 (2013).

    Article  CAS  Google Scholar 

  21. Cadart, C., Zlotek-Zlotkiewicz, E., Le Berre, M., Piel, M. & Matthews, H. K. Exploring the function of cell shape and size during mitosis. Dev. Cell 29, 159–169 (2014).

    Article  CAS  Google Scholar 

  22. Lancaster, O. M. et al. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell 25, 270–283 (2013).

    Article  CAS  Google Scholar 

  23. Cramer, L. P. & Mitchison, T. J. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol. Biol. Cell 8, 109–119 (1997).

    Article  CAS  Google Scholar 

  24. Maddox, A. S. & Burridge, K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J. Cell Biol. 160, 255–265 (2003).

    Article  CAS  Google Scholar 

  25. Dao, V. T., Dupuy, A. G., Gavet, O., Caron, E. & de Gunzburg, J. Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis. J. Cell Sci. 122, 2996–3004 (2009).

    Article  CAS  Google Scholar 

  26. Goody, M. F., Kelly, M. W., Lessard, K. N., Khalil, A. & Henry, C. A. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis. Dev. Biol. 344, 809–826 (2010).

    Article  CAS  Google Scholar 

  27. Sidhaye, J. & Norden, C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. eLife 6, e22689 (2017).

    Article  Google Scholar 

  28. Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).

    Article  CAS  Google Scholar 

  29. Losick, VickiP., Fox, DonaldT. & Spradling, AllanC. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 23, 2224–2232 (2013).

    Article  CAS  Google Scholar 

  30. Campinho, P. et al. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15, 1405 (2013).

    Article  CAS  Google Scholar 

  31. Lens, S. M. A. & Medema, R. H. Cytokinesis defects and cancer. Nat. Rev. Cancer 19, 32–45 (2019).

    Article  CAS  Google Scholar 

  32. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  Google Scholar 

  33. Caldwell, C. M., Green, R. A. & Kaplan, K. B. APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J. Cell Biol. 178, 1109–1120 (2007).

    Article  CAS  Google Scholar 

  34. Riveline, D. et al. Focal contacts as mechanosensors. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  Google Scholar 

  35. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  Google Scholar 

  36. Oria, R. et al. Force loading explains spatial sensing of ligands by cells. Nature 552, 219–224 (2017).

    Article  Google Scholar 

  37. Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631–637 (2014).

    Article  Google Scholar 

  38. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).

    Article  CAS  Google Scholar 

  39. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011).

    Article  Google Scholar 

  40. Uroz, M. et al. Regulation of cell cycle progression by cell–cell and cell–matrix forces. Nat. Cell Biol. 20, 646–654 (2018).

    Article  CAS  Google Scholar 

  41. Dix, C. L. et al. The role of mitotic cell-substrate adhesion re-modeling in animal cell division. Dev. Cell 45, 132–145 (2018).

    Article  CAS  Google Scholar 

  42. Kamranvar, S. A., Gupta, D. K., Huang, Y., Gupta, R. K. & Johansson, S. Integrin signaling via FAK-Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody. Oncotarget 7, 30820–30830 (2016).

    Article  Google Scholar 

  43. Jones, M. C., Askari, J. A., Humphries, J. D. & Humphries, M. J. Cell adhesion is regulated by CDK1 during the cell cycle. J. Cell Biol. 217, 3203–3218 (2018).

    Article  CAS  Google Scholar 

  44. Lock, J. G. et al. Reticular adhesions are a distinct class of cell-matrix adhesions that mediate attachment during mitosis. Nat. Cell Biol. 20, 1290–1302 (2018).

    Article  CAS  Google Scholar 

  45. Pellinen, T. et al. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev. Cell 15, 371–385 (2008).

    Article  CAS  Google Scholar 

  46. Taneja, N. et al. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis. Sci. Rep. 6, 29846 (2016).

    Article  CAS  Google Scholar 

  47. Bastos, R. N., Penate, X., Bates, M., Hammond, D. & Barr, F. A. CYK4 inhibits Rac1-dependent PAK1 and ARHGEF7 effector pathways during cytokinesis. J. Cell Biol. 198, 865–880 (2012).

    Article  CAS  Google Scholar 

  48. He, X., Chen, X., Li, B., Ji, J. & Chen, S. FAK inhibitors induce cell multinucleation and dramatically increase pro‐tumoral cytokine expression in RAW 264.7 macrophages. FEBS Lett. 591, 3861–3871 (2017).

    Article  CAS  Google Scholar 

  49. Burton, K. & Taylor, D. L. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997).

    Article  CAS  Google Scholar 

  50. Tanimoto, H. & Sano, M. Dynamics of traction stress field during cell division. Phys. Rev. Lett. 109, 248110 (2012).

    Article  Google Scholar 

  51. Ermis, A. et al. Tetraploidization is a physiological enhancer of wound healing. Eur. Surg. Res. 30, 385–392 (1998).

    Article  CAS  Google Scholar 

  52. Schoenfelder, K. P. & Fox, D. T. The expanding implications of polyploidy. J. Cell Biol. 209, 485–491 (2015).

    Article  CAS  Google Scholar 

  53. Normand, G. & King, R. W. Understanding cytokinesis failure. Adv. Exp. Med. Biol. 676, 27–55 (2010).

    Article  CAS  Google Scholar 

  54. Zhang, W. & Robinson, D. N. Balance of actively generated contractile and resistive forces controls cytokinesis dynamics. Proc. Natl Acad. Sci. USA 102, 7186–7191 (2005).

    Article  CAS  Google Scholar 

  55. Descovich, C. P. et al. Cross-linkers both drive and brake cytoskeletal remodeling and furrowing in cytokinesis. Mol. Biol. Cell 29, 622–631 (2018).

    Article  CAS  Google Scholar 

  56. Polte, T. R., Eichler, G. S., Wang, N. & Ingber, D. E. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am. J. Physiol. Cell Physiol. 286, C518–C528 (2004).

    Article  CAS  Google Scholar 

  57. van der Zwaag, D. et al. Super resolution imaging of nanoparticles cellular uptake and trafficking. ACS Appl. Mater. Interfaces 8, 6391–6399 (2016).

    Article  Google Scholar 

  58. Christensen, A. et al. Friction-limited cell motility in confluent monolayer tissue. Phys. Biol. 15, 066004 (2018).

    Article  Google Scholar 

  59. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–472 (2001).

    Article  Google Scholar 

  60. Srinivasan, M. & Walcott, S. Binding site models of friction due to the formation and rupture of bonds: state–function formalism, force–velocity relations, response to slip velocity transients and slip stability. Phys. Rev. E 80, 046124 (2009).

    Article  Google Scholar 

  61. Sabass, B. & Schwarz, U. S. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation. J. Phys. Condens. Matter 22, 194112 (2010).

    Article  Google Scholar 

  62. Harland, B., Walcott, S. & Sun, S. X. Adhesion dynamics and durotaxis in migrating cells. Phys. Biol. 8, 015011 (2011).

    Article  Google Scholar 

  63. Sens, P. Rigidity sensing by stochastic sliding friction. Europhys. Lett. 104, 38003 (2013).

    Article  Google Scholar 

  64. Ghibaudo, M. et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4, 1836–1843 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Castro and C. Garcia-Pastor for technical assistance, C. Norden, E. Martí and K. Poss for sharing mutant zebrafish and J. Muñoz’s custom FEM-platform EMBRYO, which has been utilized to implement the numerical model. M.U., A.G.-P. and I.T. were partially supported by pre-doctoral fellowships from the Spanish Ministry of Economy and Competitiveness ((MINECO)/FEDER BES-2013-062633, BES-2013-064698 and FPU-AP2010-5071, respectively). This work was supported by MINECO/FEDER (BFU2016-79916-P and BFU2014-52586-REDT to P.R.-C., BFU2015-65074-P to X.T., SAF2015-69706-R to A.R., BFU2016-75101-P and RYC-2014-15559 to V.C.), the Generalitat de Catalunya (2014-SGR-927 to X.T., 2014-SGR-1460 and PERIS SLT002/16/00234 to A.R. and the CERCA Programme), Instituto de Salud Carlos III-ISCIII/FEDER (Red de Terapia Celular—TerCel RD16/0011/0024 to A.R.), the European Research Council (CoG-616480 to X.T.), the European Commission (grant agreeement SEP-210342844 to P.R.-C. and X.T.), Obra Social ‘La Caixa’, and the prize ICREA Academia for excellence in research (P.R.-C.). IBEC is recipient of a Severo Ochoa Award of Excellence from MINECO.

Author information

Authors and Affiliations

Authors

Contributions

M.U., A.R. and X.T. conceived the study and designed experiments. M.U., A.G.-P., I.T., J.F.A. and A.M.-L. performed experiments. M.U. and A.E.-A. analysed data. A.E.-A., V.C. and P.R.-C. carried out theoretical modelling. M.U., S.P. and L.A. carried out STORM imaging. All authors discussed the results. M.U. and X.T. wrote the manuscript with feedback from all authors. X.T. oversaw the project.

Corresponding author

Correspondence to Xavier Trepat.

Ethics declarations

Ethics

All experiments were performed in accordance with relevant guidelines and regulations, and conducted following procedures approved by the Ethics Committee on Experimental Animals of the PRBB (CEEA-PRBB).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Supplementary Video Captions 1–10, Supplementary Table 1

Reporting Summary

Supplementary Video 1

Collective cell migration of a monolayer of epicardial cells explanting from the heart

Supplementary Video 2

Myosin dynamics during cell migration (cells expressing Myosin-GFP)

Supplementary Video 3

Myosin dynamics with tractions overlaid after a follower cell spontaneously dies

Supplementary Video 4

Phase contrast images of a monolayer of epicardial cells with overlaid tractions

Supplementary Video 5

Tractions during a successful division overlaid on phase contrast images

Supplementary Video 6

Tractions during a successful division overlaid on myosin-GFP images

Supplementary Video 7

Paxillin-GFP during a successful cell division

Supplementary Video 8

Tractions during a failed division overlaid on myosin-GFP images

Supplementary Video 9

Paxillin images during a failed cell division

Supplementary Video 10

Calculation of average traction and myosin intensity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uroz, M., Garcia-Puig, A., Tekeli, I. et al. Traction forces at the cytokinetic ring regulate cell division and polyploidy in the migrating zebrafish epicardium. Nat. Mater. 18, 1015–1023 (2019). https://doi.org/10.1038/s41563-019-0381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0381-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing