Article | Published:

Shear-strain-mediated magnetoelectric effects revealed by imaging


Large changes in the magnetization of ferromagnetic films can be electrically driven by non-180° ferroelectric domain switching in underlying substrates, but the shear components of the strains that mediate these magnetoelectric effects have not been considered so far. Here we reveal the presence of these shear strains in a polycrystalline film of Ni on a 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3 substrate in the pseudo-cubic (011)pc orientation. Although vibrating sample magnetometry records giant magnetoelectric effects that are consistent with the hitherto expected 90° rotations of a global magnetic easy axis, high-resolution vector maps of magnetization (constructed from photoemission electron microscopy data, with contrast from X-ray magnetic circular dichroism) reveal that the local magnetization typically rotates through smaller angles of 62–84°. This shortfall with respect to 90° is a consequence of the shear strain associated with ferroelectric domain switching. The non-orthogonality represents both a challenge and an opportunity for the development and miniaturization of magnetoelectric devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All relevant data are available from all corresponding authors on request.


  1. 1.

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

  2. 2.

    Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

  3. 3.

    Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

  4. 4.

    Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

  5. 5.

    Nan, C.-W., Bichurin, M. I., Dong, S., Viehland, D. & Srinivasan, G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

  6. 6.

    Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

  7. 7.

    Choi, Y. J., Zhang, C. L., Lee, N. & Cheong, S.-W. Cross-control of magnetization and polarization by electric and magnetic fields with competing multiferroic and weak-ferromagnetic phases. Phys. Rev. Lett. 105, 097201 (2010).

  8. 8.

    Tokunaga, Y., Taguchi, Y., Arima, T. H. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838–844 (2012).

  9. 9.

    Chun, S. H. et al. Electric field control of nonvolatile four-state magnetization at room temperature. Phys. Rev. Lett. 108, 177201 (2012).

  10. 10.

    Chai, Y.-S. et al. Electrical control of large magnetization reversal in a helimagnet. Nat. Commun. 5, 4208 (2014).

  11. 11.

    Zavaliche, F. et al. Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586–1590 (2007).

  12. 12.

    Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

  13. 13.

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

  14. 14.

    Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

  15. 15.

    Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

  16. 16.

    Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

  17. 17.

    Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

  18. 18.

    Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

  19. 19.

    Cuellar, F. A. et al. Reversible electric-field control of magnetization at oxide interfaces. Nat. Commun. 5, 4215–4222 (2014).

  20. 20.

    Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

  21. 21.

    Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. F. & Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6, 348–351 (2007).

  22. 22.

    Thiele, C., Dörr, K., Bilani, O., Rödel, J. & Schultz, L. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr, Ca). Phys. Rev. B 75, 054408 (2007).

  23. 23.

    Sahoo, S. et al. Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys. Rev. B 76, 092108 (2007).

  24. 24.

    Geprägs, S., Brandlmaier, A., Opel, M., Gross, R. & Goennenwein, S. T. B. Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl. Phys. Lett. 96, 142509 (2010).

  25. 25.

    Wu, T. et al. Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011)[PbMg1/3Nb2/3O3](1−x)–[PbTiO3]x. Appl. Phys. Lett. 98, 012504 (2011).

  26. 26.

    Wu, T. et al. Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices. Appl. Phys. Lett. 98, 262504 (2011).

  27. 27.

    Lahtinen, T. H. E., Franke, K. J. A. & van Dijken, S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2, 258–263 (2012).

  28. 28.

    Zhang, S. et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/(PbMg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108, 137203 (2012).

  29. 29.

    Buzzi, M. et al. Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. Phys. Rev. Lett. 111, 027204 (2013).

  30. 30.

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

  31. 31.

    Ghidini, M. et al. Perpendicular local magnetization under voltage control in Ni films on ferroelectric BaTiO3 substrates. Adv. Mater. 27, 1460–1465 (2015).

  32. 32.

    Chopdekar, R. V. et al. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure. Sci. Rep. 6, 27501 (2016).

  33. 33.

    Gao, Y. et al. Dynamic in situ observation of voltage-driven repeatable magnetization reversal at room temperature. Sci. Rep. 6, 23696 (2016).

  34. 34.

    Li, P. et al. Spatially resolved ferroelectric domain-switching-controlled magnetism in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 multiferroic heterostructure. ACS Appl. Mater. Interfaces 9, 2642–2649 (2017).

  35. 35.

    Lo Conte, R. et al. Influence of nonuniform micron-scale strain distributions on the electrical reorientation of magnetic microstructures in a composite multiferroic heterostructure. Nano Lett. 18, 1952–1961 (2018).

  36. 36.

    Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

  37. 37.

    Skumryev, V. et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).

  38. 38.

    Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

  39. 39.

    Saenrang, W. et al. Deterministic and robust room-temperature exchange coupling in monodomain multiferroic BiFeO3 heterostructures. Nat. Commun. 8, 1583–1590 (2017).

  40. 40.

    Bibes, M. & Barthelemy, A. Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).

  41. 41.

    Hu, J. M., Li, Z., Chen, L. Q. & Nan, C. W. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553–560 (2011).

  42. 42.

    Heron, J. T., Schlom, D. G. & Ramesh, R. Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 1, 021303 (2014).

  43. 43.

    Fang, F., Yang, W., Zhang, F. C. & Luo, H. S. Fatigue crack growth for BaTiO3 ferroelectric single crystals under cyclic electric loading. J. Am. Ceram. Soc. 88, 2491–2497 (2005).

  44. 44.

    Park, S. E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

  45. 45.

    Viehland, D. & Salje, E. K. H. Domain boundary-dominated systems: adaptive structures and functional twin boundaries. Adv. Phys. 63, 267–326 (2014).

  46. 46.

    Wu, T. et al. Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x(PMN-PT, x≈0.32) single crystals. J. Appl. Phys. 109, 124101 (2011).

  47. 47.

    Wang, Z., Wang, Y., Ge, W., Li, J. & Viehland, D. Volatile and nonvolatile magnetic easy-axis rotation in epitaxial ferromagnetic thin films on ferroelectric single crystal substrates. Appl. Phys. Lett. 103, 132909 (2013).

  48. 48.

    Liu, M. et al. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 25, 4886–4892 (2013).

  49. 49.

    Zhang, S. et al. Giant electrical modulation of magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) heterostructure. Sci. Rep. 4, 3727 (2014).

  50. 50.

    Heidler, J. et al. Manipulating magnetism in La0.7Sr0.3MnO3 via piezostrain. Phys. Rev. B 91, 024406 (2015).

  51. 51.

    Zhou, C., Wang, F., Dunzhu, G., Yao, J. & Jiang, C. Piezostrain tuning non-volatile 90° magnetic easy axis rotation in Co2FeAl Heusler alloy film grown on Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructures. J. Phys. D 49, 455001 (2016).

  52. 52.

    Noheda, B., Cox, D. E., Shirane, G., Gao, J. & Ye, Z.-G. Phase diagram of the ferroelectric relaxor (1–x)PbMg1/3Nb2/3O3xPbTiO3. Phys. Rev. B 66, 054104 (2002).

  53. 53.

    Peng, J. et al. Shear-mode piezoelectric properties of 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 single crystals. Solid State Commun. 130, 53–57 (2004).

  54. 54.

    Pertsev, N. A. Giant magnetoelectric effect via strain-induced spin reorientation transitions in ferromagnetic films. Phys. Rev. B 78, 212102 (2008).

Download references


This work was funded by Isaac Newton Trust grants 10.26(u) and 11.35(u), UK EPSRC grant EP/G031509/1, the Royal Society (X.M.) and a start-up fund from the University of Wisconsin-Madison (J.-M.H.). D.P. acknowledges funding from the Agència de Gestió d’Ajuts Universitaris i de Recerca – Generalitat de Catalunya (grant 2014 BP-A 00079). We thank Diamond Light Source for time on beamline I06 (proposal SI-8876), and we thank S. Zhang for discussions.

Author information

M.G. initiated the study. M.G. and N.D.M. led the project with S.S.D. R.M., R.P.C. and C.H.W.B. were responsible for the growth of thin-film Ni. The collection and preliminary analysis of PEEM data were performed by M.G., with assistance from X.M., L.C.P and W.Y. All other experimental work was performed by M.G. F.M. and S.S.D. were responsible for constructing PEEM vector maps, and the subsequent pixel-by-pixel analysis. D.P. performed image and data processing. N.D.M. proposed the pixel-by-pixel analysis of PEEM vector maps that led to the key finding of sub-90° magnetization rotation. J.-M.H. identified and calculated the shear strain that accompanies ferroelectric domain switching in PMN–PT. M.G. identified the resulting principal axes of strain and hence magnetic easy axes. M.G. and N.D.M. interpreted the observed ME effects. N.D.M. wrote the manuscript with M.G., using substantive feedback from S.S.D. and J.-M.H. and additional feedback from R.M.

Correspondence to M. Ghidini or S. S. Dhesi or N. D. Mathur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–7 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Cubic representation of the pseudocubic PMN–PT (011)pc unit cell.
Fig. 2: Macroscopic ME effects in Ni//PMN–PT (011)pc.
Fig. 3: Global and local magnetization for ME switching in Ni//PMN–PT (011)pc.
Fig. 4: Changes in the local magnetization for ME switching in Ni//PMN–PT (011)pc.
Fig. 5: Local magnetization and changes of local magnetization for ME switching in Ni//PMN–PT (011)pc.
Fig. 6: Predicted local ME switching for Ni//PMN–PT (011)pc.