Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-range chiral exchange interaction in synthetic antiferromagnets

An Author Correction to this article was published on 25 June 2019

This article has been updated

Abstract

The exchange interaction governs static and dynamic magnetism. This fundamental interaction comes in two flavours—symmetric and antisymmetric. The symmetric interaction leads to ferro- and antiferromagnetism, and the antisymmetric interaction has attracted significant interest owing to its major role in promoting topologically non-trivial spin textures that promise fast, energy-efficient devices. So far, the antisymmetric exchange interaction has been found to be rather short ranged and limited to a single magnetic layer. Here we report a long-range antisymmetric interlayer exchange interaction in perpendicularly magnetized synthetic antiferromagnets with parallel and antiparallel magnetization alignments. Asymmetric hysteresis loops under an in-plane field reveal a unidirectional and chiral nature of this interaction, which results in canted magnetic structures. We explain our results by considering spin–orbit coupling combined with reduced symmetry in multilayers. Our discovery of a long-range chiral interaction provides an additional handle to engineer magnetic structures and could enable three-dimensional topological structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antisymmetric IEI in synthetic AFMs.
Fig. 2: Chiral and unidirectional magnetization switching behaviours.
Fig. 3: In-plane field dependence of magnetization switching fields.
Fig. 4: Effective symmetry breaking in sputtered samples and antisymmetric IEI from first principles.

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

  • 25 June 2019

    In the version of this Article originally published, the sentence ‘D.-S.H. wrote the paper with K.L., J.H. and M.K.’ in the author contributions was incorrect; it should have read ‘D.-S.H. wrote the paper with K.L., J.H., M.-H.J. and M.K.’ This has been corrected in the online versions of the Article.

References

  1. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  CAS  Google Scholar 

  2. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  3. Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  CAS  Google Scholar 

  4. Kundu, A. & Zhang, S. Dzyaloshinskii–Moriya interaction mediated by spin-polarized band with Rashba spin–orbit coupling. Phys. Rev. B 92, 94434 (2015).

    Article  Google Scholar 

  5. Imamura, H., Bruno, P. & Utsumi, Y. Twisted exchange interaction between localized spins in presence of Rashba spin–orbit coupling. AIP Conf. Proc. 772, 1409–1410 (2005).

    Article  Google Scholar 

  6. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    Article  CAS  Google Scholar 

  7. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  8. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  9. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  10. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  11. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  12. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  13. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2016).

    Article  Google Scholar 

  14. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  CAS  Google Scholar 

  15. Kim, S. et al. Correlation of the Dzyaloshinskii–Moriya interaction with Heisenberg exchange and orbital asphericity. Nat. Commun. 9, 1648 (2018).

    Article  Google Scholar 

  16. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 9, 1648 (2018).

    Article  Google Scholar 

  17. Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    Article  CAS  Google Scholar 

  18. Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    Article  CAS  Google Scholar 

  19. Duine, R. A., Lee, K.-J., Parkin, S. S. P. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).

    Article  CAS  Google Scholar 

  20. Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Article  CAS  Google Scholar 

  21. Lavrijsen, R. et al. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013).

    Article  CAS  Google Scholar 

  22. Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).

    Article  Google Scholar 

  23. Yang, Q. et al. Ionic liquid gating control of RKKY interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 multilayers. Nat. Commun. 9, 991 (2018).

    Article  Google Scholar 

  24. Xia, K., Zhang, W., Lu, M. & Zhai, H. Noncollinear interlayer exchange coupling caused by interface spin-orbit interaction. Phys. Rev. B 55, 12561–12565 (1997).

    Article  CAS  Google Scholar 

  25. Vedmedenko, E. Y., Arregi, J. A., Riego, P. & Berger, A. Interlayer Dzyaloshinskii–Moriya interactions. Preprint at http://arXiv.org/cond-mat.mes-hall/:1803.10570 (2018).

  26. Ummelen, F. C., Swagten, H. J. M. & Fernández-Pacheco, A. Canted States in Anti-ferromagnetically Coupled Magnetic Bilayers. Master’s thesis, Technische Universiteit Eindhoven (2013).

  27. Je, S. G. et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 214401 (2013).

    Article  Google Scholar 

  28. Lo Conte, R. et al. Role of B diffusion in the interfacial Dzyaloshinskii–Moriya interaction in Ta/Co20Fe60B20/MgO nanowires. Phys. Rev. B 91, 14433 (2015).

    Article  Google Scholar 

  29. Demokritov, S. O. Biquadratic interlayer coupling in layered magnetic systems. J. Phys. D 31, 925 (1998).

    Article  CAS  Google Scholar 

  30. Pai, C.-F., Mann, M., Tan, A. J. & Beach, G. S. D. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys. Rev. B 93, 144409 (2016).

    Article  Google Scholar 

  31. Han, D. S. et al. Asymmetric hysteresis for probing Dzyaloshinskii–Moriya interaction. Nano Lett. 16, 4438–4446 (2016).

    Article  CAS  Google Scholar 

  32. Koplak, O. et al. Magnetization switching diagram of a perpendicular synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer. J. Magn. Magn. Mater. 433, 91–97 (2017).

    Article  CAS  Google Scholar 

  33. Lavrijsen, R. et al. Tuning the interlayer exchange coupling between single perpendicularly magnetized CoFeB layers. Appl. Phys. Lett. 100, 52411 (2012).

    Article  Google Scholar 

  34. Barranco, A., Borras, A., Gonzalez-Elipe, A. R. & Palmero, A. Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog. Mater. Sci. 76, 59–153 (2016).

    Article  CAS  Google Scholar 

  35. Alvarez, R. et al. Nanostructured Ti thin films by magnetron sputtering at oblique angles. J. Phys. D 49, 045303 (2016).

    Article  Google Scholar 

  36. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  37. Khajetoorians, A. A. et al. Tailoring the chiral magnetic interaction between two individual atoms. Nat. Commun. 7, 10620 (2016).

    Article  CAS  Google Scholar 

  38. Fernández-Pacheco, A. et al. Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets. Nat. Mater. https://doi.org/10.1038/s41563-019-0386-4 (2019).

  39. Kurz, P., Förster, F., Nordström, L., Bihlmayer, G. & Blügel, S. Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method. Phys. Rev. B 69, 24415 (2004).

    Article  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  41. Schweflinghaus, B., Zimmermann, B., Heide, M., Bihlmayer, G. & Blügel, S. Role of Dzyaloshinskii–Moriya interaction for magnetism in transition-metal chains at Pt step edges. Phys. Rev. B 94, 24403 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge insightful discussions with M. Hoffmann, S. Blügel, B. Dupé and S.-B. Choe. We acknowledge F. Ummelen for personal discussions on her results that are relevant to this work. D.-S.H., K.L. and M.K. acknowledge support from MaHoJeRo (DAAD Spintronics network, project number 57334897) and the German Research Foundation (in particular SFB TRR 173 Spin+X). K.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Standard EF no. 709151. M.-H.J. acknowledges support from the National Research Foundation (NRF) of Korea grant funded by the Korea government (MEST) (nos 2017R1A2B3007918 and 2016M3A7B4910400). C.-Y.Y. acknowledges support from the NRF of South Korea under Grant 2017R1A2B3002621 and 2015M3D1A1070465, and J.-P.H. and Y.M. acknowledge computing time on the supercomputers JUQUEEN and JURECA at the Jülich Super-computing Center, and at the JARA-HPC cluster of RWTH Aachen, as well as funding under the SPP 2137 “Skyrmionics” (project MO 1731/7-1) and project MO 1731/5-1 of the Deutsche Forschungsgemeinschaft (DFG). D.-S.H. and K.-W.K. were supported by the Korea Institute of Science and Technology (KIST) institutional program (no. 2E29410) and a National Research Council of Science & Technology (NST) grant (no. CAP-16-01-KIST) funded by the Korea government (Ministry of Science and ICT). K.-W.K. acknowledges the DFG (no. SI 1720/2-1).

Author information

Authors and Affiliations

Authors

Contributions

M.-H.J. and D.-S.H. conceived the original idea. D.-S.H., K.L., M.-H.J. and M.K. planned and designed the experiments. D.-S.H. and Y.V.H. fabricated the samples with R.L. and H.J.M.S. D.-S.H. and K.L. performed transport measurements with W.Y. and data analysis under the supervision of M.K. and M.-H.J. T.-W.K. provided [Pt/CoSiB]2/Pt multilayers. J.-P.H. and Y.M. performed the first-principles calculations and the analysis of relevant data. K.-W.K. provided theoretical explanations in Supplementary Information. D.-S.H. and C.-Y.Y. performed the numerical calculation based on a macrospin model. D.-S.H. wrote the paper with K.L., J.H., M.-H.J. and M.K. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Myung-Hwa Jung or Mathias Kläui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Supplementary Figs. 1–9 and Supplementary references 1–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, DS., Lee, K., Hanke, JP. et al. Long-range chiral exchange interaction in synthetic antiferromagnets. Nat. Mater. 18, 703–708 (2019). https://doi.org/10.1038/s41563-019-0370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0370-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing