Article | Published:

Anisotropic spin fluctuations in detwinned FeSe


Superconductivity in FeSe emerges from a nematic phase that breaks four-fold rotational symmetry in the iron plane. This phase may arise from orbital ordering, spin fluctuations or hidden magnetic quadrupolar order. Here we use inelastic neutron scattering on a mosaic of single crystals of FeSe, detwinned by mounting on a BaFe2As2 substrate to demonstrate that spin excitations are most intense at the antiferromagnetic wave vectors QAF = (±1, 0) at low energies E = 6–11 meV in the normal state. This two-fold (C2) anisotropy is reduced at lower energies, 3–5 meV, indicating a gapped four-fold (C4) mode. In the superconducting state, however, the strong nematic anisotropy is again reflected in the spin resonance (E = 3.6 meV) at QAF with incommensurate scattering around 5–6 meV. Our results highlight the extreme electronic anisotropy of the nematic phase of FeSe and are consistent with a highly anisotropic superconducting gap driven by spin fluctuations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding authors on reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383 (2012).

  2. 2.

    Dai, P. C. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855 (2015).

  3. 3.

    Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

  4. 4.

    Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

  5. 5.

    Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

  6. 6.

    Böhmer, A. E. & Meingast, C. Electronic nematic susceptibility of iron-based superconductors. C. R. Phys. 17, 90–112 (2016).

  7. 7.

    Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262 (2008).

  8. 8.

    McQueen, T. M. et al. Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett. 103, 057002 (2009).

  9. 9.

    Böhmer, A. E. & Kreisel, A. Nematicity, magnetism and superconductivity in FeSe. J. Phys.: Condens. Matter 30, 023001 (2018).

  10. 10.

    Lee, C. C., Yin, W.-G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

  11. 11.

    Baek, S.-H. et al. Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210–214 (2015).

  12. 12.

    Böhmer, A. E. et al. Origin of the tetragonal-to-orthorhombic phase transition in FeSe: a combined thermodynamic and NMR study of nematicity. Phys. Rev. Lett. 114, 027001 (2015).

  13. 13.

    Yamakawa, Y., Onari, S. & Kontani, H. Nematicity and magnetism in FeSe and other families of Fe-based superconductors. Phys. Rev. X 6, 021032 (2016).

  14. 14.

    Onari, S., Yamakawa, Y. & Kontani, H. Sign-reversing orbital polarization in the nematic phase of FeSe due to the C 2 symmetry breaking in the self-energy. Phys. Rev. Lett. 116, 227001 (2016).

  15. 15.

    Kontani, H. & Onari, S. Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard-Holstein model. Phys. Rev. Lett. 104, 157001 (2010).

  16. 16.

    Wang, F., Kivelson, S. & Lee, D.-H. Nematicity and quantum paramagnetism in FeSe. Nat. Phys. 11, 959–963 (2015).

  17. 17.

    Glasbrenner, J. K. et al. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 11, 953–958 (2015).

  18. 18.

    Wang, Q. et al. Magnetic ground state of FeSe. Nat. Commun. 7, 12182 (2016).

  19. 19.

    She, J.-H., Lawler, M. J. & Kim, E.-A. Quantum spin liquid intertwining nematic and superconducting order in FeSe. Phys. Rev. Lett. 121, 237002 (2018).

  20. 20.

    Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital degree of freedom in iron-based superconductors. npj Quantum Mater. 2, 57 (2017).

  21. 21.

    Coldea, A. & Watson, M. D. The key ingredients of the electronic structure of FeSe. Annu. Rev. Condens. Matter Phys. 9, 125–146 (2018).

  22. 22.

    Liu, D. F. et al. Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor. Phys. Rev. X 8, 031033 (2018).

  23. 23.

    Song, C. L. et al. Imaging the electron boson coupling in superconducting FeSe films using a scanning tunneling microscope. Phys. Rev. Lett. 112, 057002 (2014).

  24. 24.

    Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017).

  25. 25.

    Kostin, A. et al. Visualizing orbital-selective quasiparticle interference in the Hund’s metal state of FeSe. Nat. Mater. 17, 869–874 (2018).

  26. 26.

    Wang, Z. T., Hu, W. J. & Nevidomskyy, A. H. Spin ferroquadrupolar order in the nematic phase of FeSe. Phys. Rev. Lett. 116, 247203 (2016).

  27. 27.

    Lai, H.-H., Hu, W. J., Nica, E. M., Yu, R. & Si, Q. Antiferroquadrupolar order and rotational symmetry breaking in a generalized bilinear-biquadratic model on a square lattice. Phys. Rev. Lett. 118, 176401 (2017).

  28. 28.

    Kreisel, A., Mukherjee, S., Hirschfeld, P. J. & Andersen, B. M. Spin excitations in a model of FeSe with orbital ordering. Phys. Rev. B 92, 224515 (2015).

  29. 29.

    Mukherjee, S., Kreisel, A., Hirschfeld, P. J. & Andersen, B. M. Model of electronic structure and superconductivity in orbitally ordered FeSe. Phys. Rev. Lett. 115, 026402 (2015).

  30. 30.

    Hirschfeld, P. J. Using gap symmetry and structure to reveal the pairing mechanism in Fe-based superconductors. C. R. Phys. 17, 197–231 (2016).

  31. 31.

    Kreisel, A., Andersen, B. M. & Hirschfeld, P. J. Itinerant approach to magnetic neutron scattering of FeSe: effect of orbital selectivity. Phys. Rev. B 98, 214518 (2018).

  32. 32.

    Wang, Q. et al. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Nat. Mater. 15, 159–163 (2016).

  33. 33.

    Ma, M. W. et al. Prominent role of spin-orbit coupling in FeSe revealed by inelastic neutron scattering. Phys. Rev. X 7, 021025 (2017).

  34. 34.

    Zhang, R. et al. Neutron spin resonance as a probe of Fermi surface nesting and superconducting gap symmetry in Ba0.67K0.33(Fe1−xCox)2As2. Phys. Rev. B 98, 060502(R) (2018).

  35. 35.

    Nica, E. M., Yu, R. & Si, Q. Orbital-selective pairing and superconductivity in iron selenides. npj Quantum Mater. 2, 24 (2017).

  36. 36.

    Kreisel, A. et al. Orbital selective pairing and gap structures of iron-based superconductors. Phys. Rev. B 95, 174504 (2017).

  37. 37.

    Benfatto, L., Valenzuela, B. & Fanfarillo, L. Nematic pairing from orbital selective spin fluctuations in FeSe. npj Quantum Mater. 3, 56 (2018).

  38. 38.

    Kang, J., Fernandes, R. M. & Chubukov, A. Superconductivity in FeSe: the role of nematic order. Phys. Rev. Lett. 120, 267001 (2018).

  39. 39.

    Lu, X. Y. et al. Nematic spin correlations in the tetragonal state of uniaxial-strained BaFe2−xNixAs2. Science 345, 657 (2014).

  40. 40.

    Lu, X. Y. et al. Spin waves in detwinned BaFe2As2. Phys. Rev. Lett. 121, 067002 (2018).

  41. 41.

    Matan, K., Morinaga, R., Iida, K. & Sato, T. J. Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2: a neutron scattering study. Phys. Rev. B 79, 054526 (2009).

  42. 42.

    Wang, C. et al. Longitudinal spin excitations and magnetic anisotropy in antiferromagnetically ordered BaFe2As2. Phys. Rev. X 3, 041036 (2013).

  43. 43.

    Georges, A., de’ Medici, L. & Mravlje, J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).

  44. 44.

    de’ Medici, L. & Capone, M. in The Iron Pnictide Superconductors (eds Mancini, F. & Citro, R.) 186 (Springer, 2017).

  45. 45.

    van Roekeghem, A., Richard, P., Ding, H. & Biermann, S. Spectral properties of transition metal pnictides and chalcogenides: angle-resolved photoemission spectroscopy and dynamical mean-field theory. C. R. Phys. 17, 140 (2016).

  46. 46.

    Ishizuka, J., Yamada, T., Yanagi, Y. & Ono, Y. Fermi surface, pressure-induced antiferromagnetic order, and superconductivity in FeSe. J. Phys. Soc. Jpn 87, 014705 (2018).

  47. 47.

    Yu, R., Zhu, J.-X. & Si, Q. Orbital selectivity enhanced by nematic order in FeSe. Phys. Rev. Lett. 121, 227003 (2018).

  48. 48.

    Lake, B. et al. Spins in the vortices of a high-temperature superconductor. Science 291, 1759 (2001).

  49. 49.

    Kimura, H. et al. Novel in-gap spin state in Zn-doped La1.85Sr0.15CuO4. Phys. Rev. Lett. 91, 067002 (2003).

  50. 50.

    Andersen, B. M. et al. Disorder-induced freezing of dynamical spin fluctuations in cuprate materials. Phys. Rev. Lett. 105, 147002 (2010).

Download references


We thank D. Abernathy, Q. Wang, Y. Hao and H. Hu for useful discussions. The neutron-scattering work at Rice University was supported by the US Department of Energy, BES DE-SC0012311 (P.D.). The single-crystal synthesis work was supported by Robert A. Welch Foundation grant no. C-1839 (P.D.). X.L. is supported by the National Natural Science Foundation of China under Grant No. 11734002. C.B. and Y.C. are supported by the US Department of Energy grant no. DE-FG02-08ER46544. B.M.A. acknowledges financial support from the Carlsberg Foundation. P.J.H. was supported by the Department of Energy under grant no. DE-FG02-05ER46236. This research used resources at the High Flux Isotope Reactor and Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. Access to MACS was provided by the Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology and the National Science Foundation under agreement No. DMR-1508249.

Author information

X.L., T.C. and P.D. conceived the project. T.C. prepared all the FeSe single-crystal samples. BaFe2As2 single crystals were prepared by T.C., X.L., R.Z., Y.L. and Y.R. Neutron-scattering experiments on twinned samples were carried out by T.C., Y.C., Y.Q., C.B. and P.D. at NCNR. Neutron-scattering experiments on detwinned samples were carried out by T.C., J.P., T.G.P., J.R.S., H.C., Y.W. and P.D. at Oak Ridge National Laboratory, ISIS and MLZ. Theoretical analysis was performed by A.K., B.M.A. and P.J.H. The entire project was supervised by P.D. The manuscript was written by P.D., T.C., A.K., B.M.A. and P.J.H. All authors made comments.

Competing interests

The authors declare no competing interests.

Correspondence to Xingye Lu or Pengcheng Dai.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Supplementary Figs. 1–10 and Supplementary References 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Crystal structure, Fermi surface and neutron scattering of FeSe.
Fig. 2: Low-energy spin fluctuations in twinned FeSe below and above Tc.
Fig. 3: Normal-state spin fluctuations in detwinned FeSe.
Fig. 4: Effect of superconductivity on low-energy spin fluctuations of detwinned FeSe.
Fig. 5: Theoretical calculations of the spin fluctuations in detwinned FeSe.