Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Disorder in van der Waals heterostructures of 2D materials

Abstract

Realizing the full potential of any materials system requires understanding and controlling disorder, which can obscure intrinsic properties and hinder device performance. Here we examine both intrinsic and extrinsic disorder in two-dimensional (2D) materials, in particular graphene and transition metal dichalcogenides (TMDs). Minimizing disorder is crucial for realizing desired properties in 2D materials and improving device performance and repeatability for practical applications. We discuss the progress in disorder control for graphene and TMDs, as well as in van der Waals heterostructures realized by combining these materials with hexagonal boron nitride. Furthermore, we showcase how atomic defects or disorder can also be harnessed to provide useful electronic, optical, chemical and magnetic functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Types of disorder in 2D materials.
Fig. 2: Evolution of graphene device design and resulting performance improvements.
Fig. 3: Reducing extrinsic disorder in TMDs through hBN encapsulation.
Fig. 4: Intrinsic disorder in TMDs and defect control through growth.
Fig. 5: Applications of defects and disorder in 2D materials.

References

  1. 1.

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    Google Scholar 

  2. 2.

    Sachs, B., Wehling, T. O., Katsnelson, M. I. & Lichtenstein, A. I. Midgap states and band gap modification in defective graphene/h-BN heterostructures. Phys. Rev. B 94, 224105 (2016).

    Google Scholar 

  3. 3.

    Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron hole recombination in monolayer MoS2. Nano Lett. 15, 339–345 (2015).

    CAS  Google Scholar 

  4. 4.

    Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012).

    CAS  Google Scholar 

  5. 5.

    Wang, D. et al. Bandgap broadening at grain boundaries in single-layer MoS2. Nano Res. 11, 6102–6109 (2018).

    CAS  Google Scholar 

  6. 6.

    Hus, S. M. & Li, A.-P. Spatially-resolved studies on the role of defects and boundaries in electronic behavior of 2D materials. Prog. Surf. Sci. 92, 176–201 (2017).

    CAS  Google Scholar 

  7. 7.

    Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    CAS  Google Scholar 

  8. 8.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  9. 9.

    Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    CAS  Google Scholar 

  10. 10.

    Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

    CAS  Google Scholar 

  11. 11.

    Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    CAS  Google Scholar 

  12. 12.

    Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009).

    CAS  Google Scholar 

  13. 13.

    Chen, J.-H. et al. Charged-impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008).

    CAS  Google Scholar 

  14. 14.

    Adam, S., Hwang, E. H., Galitski, V. M. & Sarma, S. D. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

    CAS  Google Scholar 

  15. 15.

    Shin, B. G. et al. Indirect bandgap puddles in monolayer MoS2 by substrate-induced local strain. Adv. Mater. 28, 9378–9384 (2016).

    CAS  Google Scholar 

  16. 16.

    Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

    CAS  Google Scholar 

  17. 17.

    Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

    CAS  Google Scholar 

  18. 18.

    Feldman, B. E., Krauss, B., Smet, J. H. & Yacoby, A. Unconventional sequence of fractional quantum hall states in suspended graphene. Science 337, 1196–1199 (2012).

    CAS  Google Scholar 

  19. 19.

    Jr, J. V. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

    Google Scholar 

  20. 20.

    Nam, Y., Ki, D.-K., Soler-Delgado, D. & Morpurgo, A. F. Electronhole collision limited transport in charge-neutral bilayer graphene. Nat. Phys. 13, 1207–1214 (2017).

    CAS  Google Scholar 

  21. 21.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  22. 22.

    Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    CAS  Google Scholar 

  23. 23.

    Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using BaBN solvent. J. Cryst. Growth 303, 525–529 (2007).

    CAS  Google Scholar 

  24. 24.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    CAS  Google Scholar 

  25. 25.

    Garcia, A. G. F. et al. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 12, 4449–4454 (2012).

    CAS  Google Scholar 

  26. 26.

    Ponomarenko, L. A. et al. Tunable metalinsulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958–961 (2011).

    CAS  Google Scholar 

  27. 27.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Google Scholar 

  28. 28.

    Osvald, J. On barrier height inhomogeneities at polycrystalline metal-semiconductor contacts. Solid-State Electron. 35, 1629–1632 (1992).

    CAS  Google Scholar 

  29. 29.

    Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    CAS  Google Scholar 

  30. 30.

    Adam, S. & Das Sarma, S. Transport in suspended graphene. Solid State Commun. 146, 356–360 (2008).

    CAS  Google Scholar 

  31. 31.

    Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    CAS  Google Scholar 

  32. 32.

    Banszerus, L. et al. Ballistic transport exceeding 28 µm in CVD grown graphene. Nano Lett. 16, 1387–1391 (2016).

    CAS  Google Scholar 

  33. 33.

    Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).

    CAS  Google Scholar 

  34. 34.

    Chen, S. et al. Competing fractional quantum hall and electron solid phases in graphene. Phys. Rev. Lett. 122, 026802 (2019).

    CAS  Google Scholar 

  35. 35.

    Zibrov, A. A. et al. Even-denominator fractional quantum hall states at an isospin transition in monolayer graphene. Nat. Phys. 14, 930–935 (2018).

    CAS  Google Scholar 

  36. 36.

    Zeng, Y. et al. Ultra-high quality magnetotransport in graphene using the edge-free Corbino geometry. Phys. Rev. Lett. 122, 137701 (2019).

    CAS  Google Scholar 

  37. 37.

    Schreiber, K. A. et al. Onset of quantum criticality in the topological-to-nematic transition in a two-dimensional electron gas at filling factor ν = 5/2. Phys. Rev. B 96, 041107 (2017).

    Google Scholar 

  38. 38.

    Shi, Q. et al. Microwave photoresistance in an ultra-high-quality GaAs quantum well. Phys. Rev. B 93, 121305 (2016).

    Google Scholar 

  39. 39.

    Pan, W., Baldwin, K. W., West, K. W., Pfeiffer, L. N. & Tsui, D. C. Fractional quantum Hall effect at Landau level filling ν = 4/11. Phys. Rev. B 91, 041301 (2015).

    Google Scholar 

  40. 40.

    Koulakov, A. A., Fogler, M. M. & Shklovskii, B. I. Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499–502 (1996).

    CAS  Google Scholar 

  41. 41.

    Forsythe, C. et al. Band structure engineering of 2d materials using patterned dielectric superlattices. Nat. Nanotechnol. 13, 566–571 (2018).

    CAS  Google Scholar 

  42. 42.

    Li, J. et al. Negative coulomb drag in double bilayer graphene. Phys. Rev. Lett. 117, 046802 (2016).

    CAS  Google Scholar 

  43. 43.

    Dean, C. R. et al. Hofstadters butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    CAS  Google Scholar 

  44. 44.

    Yu, G. L. et al. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nat. Phys. 10, 525–529 (2014).

    CAS  Google Scholar 

  45. 45.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  46. 46.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Google Scholar 

  47. 47.

    Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    CAS  Google Scholar 

  48. 48.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    CAS  Google Scholar 

  49. 49.

    Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

    CAS  Google Scholar 

  50. 50.

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).

    CAS  Google Scholar 

  51. 51.

    Radisavljevic, B. & Kis, A. Mobility engineering and a metalinsulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    CAS  Google Scholar 

  52. 52.

    Late, D. J., Liu, B., Matte, H. S. S. R., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

    CAS  Google Scholar 

  53. 53.

    Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Google Scholar 

  54. 54.

    Staley, N. E. et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2. Phys. Rev. B 80, 184505 (2009).

    Google Scholar 

  55. 55.

    Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    CAS  Google Scholar 

  56. 56.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Google Scholar 

  57. 57.

    Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    CAS  Google Scholar 

  58. 58.

    Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar 

  59. 59.

    Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 031011 (2017).

    Google Scholar 

  60. 60.

    Zhang, X.-X. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 12, 883–888 (2017).

    CAS  Google Scholar 

  61. 61.

    Movva, H. C. et al. Density-dependent quantum hall states and zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    Google Scholar 

  62. 62.

    Wang, Z., Shan, J. & Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotechnol. 12, 144–149 (2017).

    CAS  Google Scholar 

  63. 63.

    You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

    CAS  Google Scholar 

  64. 64.

    Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    CAS  Google Scholar 

  65. 65.

    Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    CAS  Google Scholar 

  66. 66.

    Vancsó, P. et al. The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6, 29726 (2016).

    Google Scholar 

  67. 67.

    Edelberg, D. et al. Hundredfold enhancement of light emission via defect control in monolayer transition-metal dichalcogenides. Preprint at https://arxiv.org/abs/1805.00127 (2018).

  68. 68.

    Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

    Google Scholar 

  69. 69.

    Lin, Y.-C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).

    CAS  Google Scholar 

  70. 70.

    Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Google Scholar 

  71. 71.

    Gustafsson, M. V. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

    CAS  Google Scholar 

  72. 72.

    Yu, Z. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).

    CAS  Google Scholar 

  73. 73.

    Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

    CAS  Google Scholar 

  74. 74.

    Addou, R. et al. Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 9, 9124–9133 (2015).

    CAS  Google Scholar 

  75. 75.

    Addou, R. & Wallace, R. M. Surface analysis of WSe2 crystals: spatial and electronic variability. ACS Appl. Mater. Interfaces 8, 26400–26406 (2016).

    CAS  Google Scholar 

  76. 76.

    Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    CAS  Google Scholar 

  77. 77.

    Chuang, H.-J. et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high- performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016).

    CAS  Google Scholar 

  78. 78.

    Zhao, Y. et al. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 27, 1603484 (2017).

    Google Scholar 

  79. 79.

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    CAS  Google Scholar 

  80. 80.

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    CAS  Google Scholar 

  81. 81.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS  Google Scholar 

  82. 82.

    Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    CAS  Google Scholar 

  83. 83.

    Li, G. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 138, 16632–16638 (2016).

    CAS  Google Scholar 

  84. 84.

    Guguchia, Z. et al. Magnetism in semiconducting molybdenum dichalcogenides. Sci. Adv. 4, eaat3672 (2018).

    CAS  Google Scholar 

  85. 85.

    Zhang, J. et al. Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7, 2370–2376 (2007).

    CAS  Google Scholar 

  86. 86.

    Kaasbjerg, K., Martiny, J. H. J., Low, T. & Jauho, A.-P. Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides. Phys. Rev. B 96, 241411 (2017).

    Google Scholar 

  87. 87.

    Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    CAS  Google Scholar 

  88. 88.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    CAS  Google Scholar 

  89. 89.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Google Scholar 

  90. 90.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Google Scholar 

  91. 91.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    CAS  Google Scholar 

  92. 92.

    Jana, M. & Singh, R. N. Progress in CVD synthesis of layered hexagonal boron nitride with tunable properties and their applications. Int. Mater. Rev. 63, 162–203 (2018).

    CAS  Google Scholar 

  93. 93.

    Kalantar-zadeh, K. et al. Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016).

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge M. Yankowitz and J. I. A. Li for many discussions involving graphene and graphene devices. This work was supported the National Science Foundation Materials Research Science and Engineering Centers programme through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). S.H.C. was supported by the Postdoctoral Research Program of Sungkyunkwan University (2016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to James Hone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rhodes, D., Chae, S.H., Ribeiro-Palau, R. et al. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019). https://doi.org/10.1038/s41563-019-0366-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing