Disorder in van der Waals heterostructures of 2D materials

Abstract

Realizing the full potential of any materials system requires understanding and controlling disorder, which can obscure intrinsic properties and hinder device performance. Here we examine both intrinsic and extrinsic disorder in two-dimensional (2D) materials, in particular graphene and transition metal dichalcogenides (TMDs). Minimizing disorder is crucial for realizing desired properties in 2D materials and improving device performance and repeatability for practical applications. We discuss the progress in disorder control for graphene and TMDs, as well as in van der Waals heterostructures realized by combining these materials with hexagonal boron nitride. Furthermore, we showcase how atomic defects or disorder can also be harnessed to provide useful electronic, optical, chemical and magnetic functions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Types of disorder in 2D materials.
Fig. 2: Evolution of graphene device design and resulting performance improvements.
Fig. 3: Reducing extrinsic disorder in TMDs through hBN encapsulation.
Fig. 4: Intrinsic disorder in TMDs and defect control through growth.
Fig. 5: Applications of defects and disorder in 2D materials.

References

  1. 1.

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

  2. 2.

    Sachs, B., Wehling, T. O., Katsnelson, M. I. & Lichtenstein, A. I. Midgap states and band gap modification in defective graphene/h-BN heterostructures. Phys. Rev. B 94, 224105 (2016).

  3. 3.

    Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron hole recombination in monolayer MoS2. Nano Lett. 15, 339–345 (2015).

  4. 4.

    Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012).

  5. 5.

    Wang, D. et al. Bandgap broadening at grain boundaries in single-layer MoS2. Nano Res. 11, 6102–6109 (2018).

  6. 6.

    Hus, S. M. & Li, A.-P. Spatially-resolved studies on the role of defects and boundaries in electronic behavior of 2D materials. Prog. Surf. Sci. 92, 176–201 (2017).

  7. 7.

    Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

  8. 8.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

  9. 9.

    Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

  10. 10.

    Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

  11. 11.

    Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

  12. 12.

    Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009).

  13. 13.

    Chen, J.-H. et al. Charged-impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008).

  14. 14.

    Adam, S., Hwang, E. H., Galitski, V. M. & Sarma, S. D. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

  15. 15.

    Shin, B. G. et al. Indirect bandgap puddles in monolayer MoS2 by substrate-induced local strain. Adv. Mater. 28, 9378–9384 (2016).

  16. 16.

    Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

  17. 17.

    Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

  18. 18.

    Feldman, B. E., Krauss, B., Smet, J. H. & Yacoby, A. Unconventional sequence of fractional quantum hall states in suspended graphene. Science 337, 1196–1199 (2012).

  19. 19.

    Jr, J. V. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

  20. 20.

    Nam, Y., Ki, D.-K., Soler-Delgado, D. & Morpurgo, A. F. Electronhole collision limited transport in charge-neutral bilayer graphene. Nat. Phys. 13, 1207–1214 (2017).

  21. 21.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  22. 22.

    Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

  23. 23.

    Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using BaBN solvent. J. Cryst. Growth 303, 525–529 (2007).

  24. 24.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

  25. 25.

    Garcia, A. G. F. et al. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 12, 4449–4454 (2012).

  26. 26.

    Ponomarenko, L. A. et al. Tunable metalinsulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958–961 (2011).

  27. 27.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  28. 28.

    Osvald, J. On barrier height inhomogeneities at polycrystalline metal-semiconductor contacts. Solid-State Electron. 35, 1629–1632 (1992).

  29. 29.

    Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

  30. 30.

    Adam, S. & Das Sarma, S. Transport in suspended graphene. Solid State Commun. 146, 356–360 (2008).

  31. 31.

    Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

  32. 32.

    Banszerus, L. et al. Ballistic transport exceeding 28 µm in CVD grown graphene. Nano Lett. 16, 1387–1391 (2016).

  33. 33.

    Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).

  34. 34.

    Chen, S. et al. Competing fractional quantum hall and electron solid phases in graphene. Phys. Rev. Lett. 122, 026802 (2019).

  35. 35.

    Zibrov, A. A. et al. Even-denominator fractional quantum hall states at an isospin transition in monolayer graphene. Nat. Phys. 14, 930–935 (2018).

  36. 36.

    Zeng, Y. et al. Ultra-high quality magnetotransport in graphene using the edge-free Corbino geometry. Phys. Rev. Lett. 122, 137701 (2019).

  37. 37.

    Schreiber, K. A. et al. Onset of quantum criticality in the topological-to-nematic transition in a two-dimensional electron gas at filling factor ν = 5/2. Phys. Rev. B 96, 041107 (2017).

  38. 38.

    Shi, Q. et al. Microwave photoresistance in an ultra-high-quality GaAs quantum well. Phys. Rev. B 93, 121305 (2016).

  39. 39.

    Pan, W., Baldwin, K. W., West, K. W., Pfeiffer, L. N. & Tsui, D. C. Fractional quantum Hall effect at Landau level filling ν = 4/11. Phys. Rev. B 91, 041301 (2015).

  40. 40.

    Koulakov, A. A., Fogler, M. M. & Shklovskii, B. I. Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499–502 (1996).

  41. 41.

    Forsythe, C. et al. Band structure engineering of 2d materials using patterned dielectric superlattices. Nat. Nanotechnol. 13, 566–571 (2018).

  42. 42.

    Li, J. et al. Negative coulomb drag in double bilayer graphene. Phys. Rev. Lett. 117, 046802 (2016).

  43. 43.

    Dean, C. R. et al. Hofstadters butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

  44. 44.

    Yu, G. L. et al. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nat. Phys. 10, 525–529 (2014).

  45. 45.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

  46. 46.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

  47. 47.

    Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

  48. 48.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

  49. 49.

    Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

  50. 50.

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).

  51. 51.

    Radisavljevic, B. & Kis, A. Mobility engineering and a metalinsulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

  52. 52.

    Late, D. J., Liu, B., Matte, H. S. S. R., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

  53. 53.

    Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

  54. 54.

    Staley, N. E. et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2. Phys. Rev. B 80, 184505 (2009).

  55. 55.

    Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

  56. 56.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

  57. 57.

    Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

  58. 58.

    Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

  59. 59.

    Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 031011 (2017).

  60. 60.

    Zhang, X.-X. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 12, 883–888 (2017).

  61. 61.

    Movva, H. C. et al. Density-dependent quantum hall states and zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

  62. 62.

    Wang, Z., Shan, J. & Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotechnol. 12, 144–149 (2017).

  63. 63.

    You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

  64. 64.

    Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

  65. 65.

    Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

  66. 66.

    Vancsó, P. et al. The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6, 29726 (2016).

  67. 67.

    Edelberg, D. et al. Hundredfold enhancement of light emission via defect control in monolayer transition-metal dichalcogenides. Preprint at https://arxiv.org/abs/1805.00127 (2018).

  68. 68.

    Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

  69. 69.

    Lin, Y.-C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).

  70. 70.

    Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

  71. 71.

    Gustafsson, M. V. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

  72. 72.

    Yu, Z. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).

  73. 73.

    Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

  74. 74.

    Addou, R. et al. Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 9, 9124–9133 (2015).

  75. 75.

    Addou, R. & Wallace, R. M. Surface analysis of WSe2 crystals: spatial and electronic variability. ACS Appl. Mater. Interfaces 8, 26400–26406 (2016).

  76. 76.

    Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

  77. 77.

    Chuang, H.-J. et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high- performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016).

  78. 78.

    Zhao, Y. et al. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 27, 1603484 (2017).

  79. 79.

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

  80. 80.

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

  81. 81.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

  82. 82.

    Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

  83. 83.

    Li, G. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 138, 16632–16638 (2016).

  84. 84.

    Guguchia, Z. et al. Magnetism in semiconducting molybdenum dichalcogenides. Sci. Adv. 4, eaat3672 (2018).

  85. 85.

    Zhang, J. et al. Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7, 2370–2376 (2007).

  86. 86.

    Kaasbjerg, K., Martiny, J. H. J., Low, T. & Jauho, A.-P. Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides. Phys. Rev. B 96, 241411 (2017).

  87. 87.

    Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

  88. 88.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

  89. 89.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

  90. 90.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

  91. 91.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

  92. 92.

    Jana, M. & Singh, R. N. Progress in CVD synthesis of layered hexagonal boron nitride with tunable properties and their applications. Int. Mater. Rev. 63, 162–203 (2018).

  93. 93.

    Kalantar-zadeh, K. et al. Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016).

Download references

Acknowledgements

We would like to acknowledge M. Yankowitz and J. I. A. Li for many discussions involving graphene and graphene devices. This work was supported the National Science Foundation Materials Research Science and Engineering Centers programme through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). S.H.C. was supported by the Postdoctoral Research Program of Sungkyunkwan University (2016).

Author information

Correspondence to James Hone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark