Magnetism in d0 oxides

A Publisher Correction to this article was published on 10 June 2019

This article has been updated

Oxides of non-magnetic cations exhibit elusive signs of weak temperature-independent ferromagnetism. The effect is associated with surface defects, but it defies conventional explanation. Possible hypotheses are a spin-split defect impurity band, or giant orbital paramagnetism related to zero-point vacuum fluctuations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The d0 syndrome and some representative oxide systems.
Fig. 2: Tuning the effect — enhancement (green arrows) and suppression (red arrows).

Change history

  • 10 June 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Goodenough, J. B. Magnetism and the Chemical Bond (Wiley, 1966).

  2. 2.

    Khomskii, D. I. Transition Metal Compounds (Cambridge Univ. Press, 2014).

  3. 3.

    Burns, R. G. Mineralogical Applications of Crystal Field Theory (Cambridge Univ. Press, 1996).

  4. 4.

    Matsumoto, T. et al. Science 291, 854–856 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Dietl, T. Nat. Mater. 9, 965–974 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Abraham, D. W., Frank, M. M. & Guha, S. Appl. Phys. Lett. 87, 252502 (2005).

    Article  Google Scholar 

  7. 7.

    Khalid, M. et al. Phys. Rev. B 81, 214414 (2010).

    Article  Google Scholar 

  8. 8.

    Garcia, M. A. et al. J. Appl. Phys. 105, 013925 (2005).

    Article  Google Scholar 

  9. 9.

    Coey, J. M. D. et al. IEEE Trans. Magn. 46, 2501–2503 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Ackland, K. & Coey, J. M. D. Phys. Rep. 746, 1–39 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Chambers, S. A. Surf. Sci. Rep. 61, 345–381 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    Hwang, H. Y. et al. Nat. Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Ohtomo, A. & Hwang, H. Y. Nature 327, 423–426 (2004).

    Article  Google Scholar 

  14. 14.

    Tietze, T. et al. New J. Phys. 10, 055009 (2008).

    Article  Google Scholar 

  15. 15.

    Coey, J. M. D., Stamenov, P., Gunning, R. D., Venkatesan, M. & Paul, K. New J. Phys. 12, 053025 (2010).

    Article  Google Scholar 

  16. 16.

    Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U. & Rao, C. N. R. Phys. Rev. B 74, 161306(R) (2006).

    Article  Google Scholar 

  17. 17.

    Sundaresan, A. & Rao, C. N. R. Nano Today 4, 96–106 (February, 2009).

  18. 18.

    Straumal, B. et al. Phys. Rev. B 79, 205206 (2009).

    Article  Google Scholar 

  19. 19.

    Coey, M., Ackland, K., Venkatesan, M. & Sen, S. Nat. Phys. 12, 694–699 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Coey, J. M. D., Venkatesan, M. & Stamenov, P. J. Phys. Condens. Matter 28, 485001 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Esmaeily, A. S., Venkatesan, M., Sen, S. & Coey, J. M. D. Phys. Rev. Mater. 2, 054405 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Ata, M. S., Liu, Y. & Zhitomirsky, I. RSC Adv. 4, 22716–22732 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Radovanovic, P. V. & Gamelin, D. R. Phys. Rev. Lett. 91, 157202 (2003).

    Article  Google Scholar 

  24. 24.

    Elfimov, I. S., Yunoki, S. & Sawatzky, G. A. Phys. Rev. Lett. 89, 216403 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    Lopez-Bezanilla, A., Ganesh, P. & Litttlewood, P. B. Phys. Rev. B 92, 115112 (2015).

    Article  Google Scholar 

  26. 26.

    Nakaoka, Y. Phys. Rev. 147, 392–405 (1966).

    Article  Google Scholar 

  27. 27.

    Edwards, D. M. & Katsnelson, M. I. J. Phys. Condens. Matter 18, 7209–7225 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    Hernando, A., Crespo, P. & García, M. A. Phys. Rev. Lett. 96, 057206 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    Nealon, G. L. et al. Nanoscale 4, 5244–5258 (2010).

    Article  Google Scholar 

  30. 30.

    Sen, S., Gupta, K. S. & Coey, J. M. D. Phys. Rev. B 92, 155115 (2015).

    Article  Google Scholar 

  31. 31.

    Lambrecht, A. Phys. World 15, 29–32 (September, 2002).

  32. 32.

    Koch, R. H., van Harlingen, D. J. & Clarke, J. Phys. Rev. Lett. 47, 1216–1219 (1981).

    CAS  Article  Google Scholar 

  33. 33.

    Ebbesen, T. W. Acc. Chem. Res. 49, 2403–2412 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Yoo, S.-H., Todorova, M. & Neugebauer, J. Phys. Rev. Lett. 120, 066101 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Fernandes, V. et al. Phys. Rev. B 80, 035202 (2009).

    Article  Google Scholar 

  36. 36.

    Thonhauser, T. Int. J. Mod. Phys. B 25, 1429–1458 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Science Foundation Ireland, grant 16/IA/4534.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. M. D. Coey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coey, J.M.D. Magnetism in d0 oxides. Nat. Mater. 18, 652–656 (2019). https://doi.org/10.1038/s41563-019-0365-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing