Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ probing electrified interfacial water structures at atomically flat surfaces


Solid/liquid interfaces are ubiquitous in nature and knowledge of their atomic-level structure is essential in elucidating many phenomena in chemistry, physics, materials science and Earth science1. In electrochemistry, in particular, the detailed structure of interfacial water, such as the orientation and hydrogen-bonding network in electric double layers under bias potentials, has a significant impact on the electrochemical performances of electrode materials2,3,4. To elucidate the structures of electric double layers at electrochemical interfaces, we combine in situ Raman spectroscopy and ab initio molecular dynamics and distinguish two structural transitions of interfacial water at electrified Au single-crystal electrode surfaces. Towards negative potentials, the interfacial water molecules evolve from structurally ‘parallel’ to ‘one-H-down’ and then to ‘two-H-down’. Concurrently, the number of hydrogen bonds in the interfacial water also undergoes two transitions. Our findings shed light on the fundamental understanding of electric double layers and electrochemical processes at the interfaces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Probing interfacial water on Au single-crystal electrode surfaces.
Fig. 2: Vibrational spectra of interfacial water at Au single-crystal electrode surfaces.
Fig. 3: Potential dependence of the interfacial water structure at the electrified Au(111) surface from AIMD simulations.
Fig. 4: Potential-dependent evolution of the hydrogen-bond network of interfacial water.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. Schmickler, W. & Santos, E. Interfacial Electrochemistry (Springer, 2010).

  2. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  3. Casalongue, H. S. et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat. Commun. 4, 2817 (2013).

    Article  Google Scholar 

  4. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  5. Toney, M. F. et al. Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368, 444–446 (1994).

    Article  CAS  Google Scholar 

  6. Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article  CAS  Google Scholar 

  7. Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667–674 (2012).

    Article  CAS  Google Scholar 

  8. Velasco-Velez, J.-J. et al. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014).

    Article  CAS  Google Scholar 

  9. Guo, J. et al. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 13, 184–189 (2014).

    Article  CAS  Google Scholar 

  10. Wernet, P. et al. The structure of the first coordination shell in liquid water. Science 304, 995–999 (2004).

    Article  CAS  Google Scholar 

  11. Myneni, S. et al. Spectroscopic probing of local hydrogen-bonding structures in liquid water. J. Phys. Condens. Matter 14, L213 (2002).

    Article  CAS  Google Scholar 

  12. Ataka, K.-i, Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).

    Article  CAS  Google Scholar 

  13. Liu, W.-T. & Shen, Y. R. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. Proc. Natl Acad. Sci. USA 111, 1293–1297 (2014).

    Article  CAS  Google Scholar 

  14. Schultz, Z. D., Shaw, S. K. & Gewirth, A. A. Potential dependent organization of water at the electrified metal–liquid interface. J. Am. Chem. Soc. 127, 15916–15922 (2005).

    Article  CAS  Google Scholar 

  15. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  CAS  Google Scholar 

  16. Chen, Y. X., Zou, S. Z., Huang, K. Q. & Tian, Z. Q. SERS studies of electrode/electrolyte interfacial water part II—librations of water correlated to hydrogen evolution reaction. J. Raman Spectrosc. 29, 749–756 (1998).

    Article  CAS  Google Scholar 

  17. Tong, Y., Lapointe, F., Thämer, M., Wolf, M. & Campen, R. K. Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem. Int. Ed. 56, 4211–4214 (2017).

    Article  CAS  Google Scholar 

  18. Du, Q., Freysz, E. & Shen, Y. R. Vibrational spectra of water molecules at quartz/water interfaces. Phys. Rev. Lett. 72, 238–241 (1994).

    Article  CAS  Google Scholar 

  19. Nihonyanagi, S. et al. Potential-dependent structure of the interfacial water on the gold electrode. Surf. Sci. 573, 11–16 (2004).

    Article  CAS  Google Scholar 

  20. Tian, Z.-Q., Ren, B., Chen, Y.-X., Zou, S.-Z. & Mao, B.-W. Probing electrode/electrolyte interfacial structure in the potential region of hydrogen evolution by Raman spectroscopy. J. Chem. Soc. Faraday Trans. 92, 3829–3838 (1996).

    Article  CAS  Google Scholar 

  21. Le, J., Iannuzzi, M., Cuesta, A. & Cheng, J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics. Phys. Rev. Lett. 119, 016801 (2017).

    Article  Google Scholar 

  22. Cheng, J., Liu, X., VandeVondele, J., Sulpizi, M. & Sprik, M. Redox potentials and acidity constants from density functional theory based molecular dynamics. Acc. Chem. Res. 47, 3522–3529 (2014).

    Article  CAS  Google Scholar 

  23. Kolb, D. M. & Schneider, J. Surface reconstruction in electrochemistry: Au(100-(5×20), Au(111)-(1×23) and Au(110)-(1×2). Electrochim. Acta 31, 929–936 (1986).

    Article  CAS  Google Scholar 

  24. Noguchi, H., Okada, T. & Uosaki, K. Molecular structure at electrode/electrolyte solution interfaces related to electrocatalysis. Faraday Discuss. 140, 125–137 (2009).

    Article  Google Scholar 

  25. Wasileski, S. A., Koper, M. T. M. & Weaver, M. J. Field-dependent electrode–chemisorbate bonding: sensitivity of vibrational Stark effect and binding energetics to nature of surface coordination. J. Am. Chem. Soc. 124, 2796–2805 (2002).

    Article  CAS  Google Scholar 

  26. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  27. Scherer, J. R. in Advances in Infrared and Raman Spectroscopy Vol. 5 (eds Clark, R. J. H. & Hester, R. E.) Ch. 3 (Wiley, 1978).

  28. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  30. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

Download references


The authors thank J.W. Yan and S. Liu for helpful discussions. Funding was provdied by the National Natural Science Foundation of China (grants nos. 21373166, 21775127, 21861132015, 21522508, 21521004, 21427813, 21321062, 21621091 and 21533006).

Author information

Authors and Affiliations



J.F.L., J.C., C.Y.L. and J.B.L. conceived and designed the project, analysed the results and wrote the manuscript. C.Y.L., Y.H.W., Z.Q.T. and J.F.L. carried out the experiments and analysed the data. J.B.L. and J.C. performed the AIMD calculations. Z.L.Y. and S.C. contributed to FDTD simulations.

Corresponding authors

Correspondence to Jian-Feng Li or Jun Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials and methods, Supplementary Figs. 1–8, Supplementary refs. 1–16

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CY., Le, JB., Wang, YH. et al. In situ probing electrified interfacial water structures at atomically flat surfaces . Nat. Mater. 18, 697–701 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing