Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Droplet epitaxy of semiconductor nanostructures for quantum photonic devices

Subjects

Abstract

The long dreamed ‘quantum internet’ would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots (QDs) are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor QDs, or ‘artificial atoms’—namely, the Stranski–Krastanov (SK) and the droplet epitaxy (DE) methods. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, local droplet etching (LDE), as complementary routes to obtain high-quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometimes even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the achievements and challenges that are still open, in view of applications in quantum communication and technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Droplet epitaxy.
Fig. 2: Droplet epitaxy quantum dots.

Adapted from ref. 153, AIP (a); and ref. 154, Elsevier (c)

Fig. 3: Local droplet etching.

Courtesy of David Fuster, Instituto de Micro y Nanotecnología—CNM, CSIC (e,f). Reproduced from ref. 155, AIP (g)

Fig. 4: Quantum photonics.

Adapted from ref. 156, APS (b); ref. 102, AIP (d); ref. 103, SNL (e); ref. 101, American Chemical Society (f,g); and ref. 110, American Chemical Society (h). Courtesy of Eden Figueroa, Stony Brook University (c)

Fig. 5: Entangled photons from symmetric quantum dots.

Adapted from ref. 79, AIP (b); ref. 29, SNL (c); ref. 103, SNL (d,e); and ref. 151, APS (d,e)

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Google Scholar 

  2. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  3. Orieux, A., Versteegh, M. A. M., Jons, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation : a review. Rep. Prog. Phys. 80, 076001 (2017).

    Article  CAS  Google Scholar 

  4. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  CAS  Google Scholar 

  5. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  CAS  Google Scholar 

  6. Minář, J., De Riedmatten, H., Simon, C., Zbinden, H. & Gisin, N. Phase-noise measurements in long-fiber interferometers for quantum-repeater applications. Phys. Rev. A 77, 052325 (2008).

    Article  CAS  Google Scholar 

  7. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  CAS  Google Scholar 

  8. Acín, A., Gisin, N. & Masanes, L. From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006).

    Article  CAS  Google Scholar 

  9. Pironio, S. et al. Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009).

    Article  Google Scholar 

  10. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  11. Orieux, A., Versteegh, M. A. M., Jöns, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 80, 076001 (2017).

    Article  CAS  Google Scholar 

  12. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  CAS  Google Scholar 

  13. Arakawa, Y., Sasaki, H. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    Article  CAS  Google Scholar 

  14. Michler, P. et al. A Quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  CAS  Google Scholar 

  15. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  CAS  Google Scholar 

  16. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  CAS  Google Scholar 

  17. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  18. Shields, A. J. Semiconductor quantum light sources. Nat. Photon. 1, 215–223 (2007).

    Article  CAS  Google Scholar 

  19. Cibert, J. et al. Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes. Appl. Phys. Lett. 49, 1275–1277 (1986).

    Article  CAS  Google Scholar 

  20. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  21. Eaglesham, D. & Cerullo, M. Dislocation-free stranski-krastanow growth of Ge on Si (100). Phys. Rev. Lett. 64, 1943–1946 (1990).

    Article  CAS  Google Scholar 

  22. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P. & Petroff, P. M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 63, 3203–3205 (1993).

    Article  CAS  Google Scholar 

  23. Koguchi, N., Takahashi, S. & Chikyow, T. New MBE growth method for InSb quantum well boxes. J. Cryst. Growth 111, 688–692 (1991).

    Article  CAS  Google Scholar 

  24. Bhattacharya, A. & Bansa, B. in Handbook of Crystal Growth Vol 3 (ed. Kuech, T. F.) 1057 (Elsevier, 2015).

  25. Shchukin, V. A., Ledentsov, N. N. & Bimberg, D. Epitaxy of Nanostructures (Springer, 2003).

  26. Tartakovskii, A. I. Quantum Dots: Optics, Electron Transport and Future Applications (Cambridge Univ. Press, 2012).

  27. Costantini, G. et al. Universal shapes of self-organized semiconductor quantum dots: striking similarities between InAs∕GaAs(001) and Ge∕Si(001). Appl. Phys. Lett. 85, 5673–5675 (2004).

    Article  CAS  Google Scholar 

  28. Rastelli, A. et al. Three-dimensional composition profiles of single quantum dots determined by scanning-probe-microscopy-based nanotomography. Nano Lett. 8, 1404–1409 (2008).

    Article  CAS  Google Scholar 

  29. Keil, R. et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun. 8, 15501 (2017).

    Article  CAS  Google Scholar 

  30. Watanabe, K., Koguchi, N. & Gotoh, Y. Fabrication of GaAs quantum dots by modified droplet epitaxy. Jpn. J. Appl. Phys. 39, L79 (2000).

    Article  CAS  Google Scholar 

  31. Mano, T. et al. Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy. Appl. Phys. Lett. 76, 3543–3545 (2000).

    Article  CAS  Google Scholar 

  32. Somaschini, C. et al. Self-assembled GaAs islands on Si by droplet epitaxy. Appl. Phys. Lett. 97, 053101 (2010).

    Article  CAS  Google Scholar 

  33. Kawazu, T., Mano, T., Noda, T. & Sakaki, H. Optical properties of GaSb/GaAs type-II quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 94, 081911 (2009).

    Article  CAS  Google Scholar 

  34. Schupp, T. et al. Droplet epitaxy of zinc-blende GaN quantum dots. J. Cryst. Growth 312, 3235–3237 (2010).

    Article  CAS  Google Scholar 

  35. Prongjit, P. et al. Type-II recombination dynamics of tensile-strained GaP quantum dots in GaAs grown by droplet epitaxy. Appl. Phys. Lett. 109, 171902 (2016).

    Article  CAS  Google Scholar 

  36. Watanabe, K., Koguchi, N. & Gotoh, Y. Fabrication of GaAs quantum dots by modified droplet epitaxy. Jpn. J. Appl. Phys. 39, L79 (2000).

    Article  CAS  Google Scholar 

  37. Markov, I. V. Crystal Growth for Beginners (World Scientific, 1995).

  38. Reyes, K. et al. Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory. Phys. Rev. B 87, 165406 (2013).

    Article  CAS  Google Scholar 

  39. Heyn, C. et al. Regimes of GaAs quantum dot self-assembly by droplet epitaxy. Phys. Rev. B 76, 75317 (2007).

    Article  CAS  Google Scholar 

  40. Jo, M., Mano, T., Sakuma, Y. & Sakoda, K. Extremely high-density GaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 100, 212113 (2012).

    Article  CAS  Google Scholar 

  41. Venables, J. A. Atomic processes in crystal growth. Surf. Sci. 299–300, 798–817 (1994).

    Article  Google Scholar 

  42. Floro, J., Chason, E., Twesten, R., Hwang, R. & Freund, L. SiGe coherent islanding and stress relaxation in the high mobility regime. Phys. Rev. Lett. 79, 3946–3949 (1997).

    Article  CAS  Google Scholar 

  43. Watanabe, K., Tsukamoto, S., Gotoh, Y. & Koguchi, N. Photoluminescence studies of GaAs quantum dots grown by droplet epitaxy. J. Cryst. Growth 227–228, 1073–1077 (2001).

    Article  Google Scholar 

  44. Somaschini, C., Bietti, S., Koguchi, N. & Sanguinetti, S. Fabrication of multiple concentric nanoring structures. Nano Lett. 9, 3419–24 (2009).

    Article  CAS  Google Scholar 

  45. Bietti, S., Somaschini, C. & Sanguinetti, S. Crystallization kinetics of Ga metallic nano-droplets under As flux. Nanotechnology 24, 205603 (2013).

    Article  CAS  Google Scholar 

  46. Jo, M., Mano, T., Abbarchi, M., Kuroda, T. & Sakuma, Y. Self-limiting growth of hexagonal and triangular quantum dots on (111)A. Cryst. Growth Des. 12, 1411–1415 (2012).

    Article  CAS  Google Scholar 

  47. Bietti, S., Somaschini, C., Esposito, L., Fedorov, A. & Sanguinetti, S. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets. J. Appl. Phys. 116, 114311 (2014).

    Article  CAS  Google Scholar 

  48. Inoue, N. MBE monolayer growth control by in-situ electron microscopy. J. Cryst. Growth 111, 75–82 (1991).

    Article  CAS  Google Scholar 

  49. Mano, T. et al. Self-assembly of concentric quantum double rings. Nano Lett. 5, 425–428 (2005).

    Article  CAS  Google Scholar 

  50. Somaschini, C., Bietti, S., Koguchi, N. & Sanguinetti, S. Coupled quantum dot–ring structures by droplet epitaxy. Nanotechnology 22, 185602 (2011).

    Article  CAS  Google Scholar 

  51. Sato, K., Fahy, M. R. & Joyce, B. A. Reflection high energy electron diffraction intensity oscillation study of the growth of GaAs on GaAs(111)A. Surf. Sci. 315, 105–111 (1994).

    Article  CAS  Google Scholar 

  52. Bietti, S. et al. Precise shape engineering of epitaxial quantum dots by growth kinetics. Phys. Rev. B 92, 075425 (2015).

    Article  CAS  Google Scholar 

  53. Mantovani, V. et al. Low density GaAs∕AlGaAs quantum dots grown by modified droplet epitaxy. J. Appl. Phys. 96, 4416–4420 (2004).

    Article  CAS  Google Scholar 

  54. Strauf, S. et al. High-frequency single-photon source with polarization control. Nat. Photon. 1, 704–708 (2007).

    Article  CAS  Google Scholar 

  55. Martyniuk, P. & Rogalski, A. Quantum-dot infrared photodetectors: status and outlook. Prog. Quantum Electron. 32, 89–120 (2008).

    Article  Google Scholar 

  56. Mellor, A. et al. The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells. Appl. Phys. Lett. 101, 133909 (2012).

    Article  CAS  Google Scholar 

  57. Koguchi, N., Takahashi, S. & Chikyow, T. New MBE growth method for InSb quantum well boxes. J. Cryst. Growth 111, 688–692 (1991).

    Article  CAS  Google Scholar 

  58. Urbańczyk, A., Hamhuis, G. J. & Nötzel, R. Strain-driven alignment of In nanocrystals on InGaAs quantum dot arrays and coupled plasmon-quantum dot emission. Appl. Phys. Lett. 96, 113101 (2010).

    Article  CAS  Google Scholar 

  59. Mano, T. et al. Self-assembly of symmetric GaAs quantum dots on (111)A substrates: suppression of fine-structure splitting. Appl. Phys. Express 3, 065203 (2010).

    Article  CAS  Google Scholar 

  60. Liu, X. et al. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy. Phys. Rev. B 90, 081301(R) (2014).

    Article  CAS  Google Scholar 

  61. Ohtake, a, Ozeki, M. & Nakamura, J. Strain relaxation in InAs/GaAs(111)A heteroepitaxy. Phys. Rev. Lett. 84, 4665–4668 (2000).

    Article  CAS  Google Scholar 

  62. Sanguinetti, S. et al. Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer. J. Cryst. Growth 253, 71–76 (2002).

    Article  CAS  Google Scholar 

  63. Sanguinetti, S. et al. Carrier thermal escape and retrapping in self-assembled quantum dots. Phys. Rev. B 60, 8276–8283 (1999).

    Article  CAS  Google Scholar 

  64. Somaschini, C., Bietti, S., Koguchi, N. & Sanguinetti, S. Shape control via surface reconstruction kinetics of droplet epitaxy nanostructures. Appl. Phys. Lett. 97, 203109 (2010).

    Article  CAS  Google Scholar 

  65. Zhou, Z. Y., Zheng, C. X., Tang, W. X., Tersoff, J. & Jesson, D. E. Origin of quantum ring formation during droplet epitaxy. Phys. Rev. Lett. 111, 036102 (2013).

    Article  CAS  Google Scholar 

  66. Mano, T. et al. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy. Nanotechnology 20, 395601 (2009).

    Article  CAS  Google Scholar 

  67. Tripathi, L. N. et al. Resonance fluorescence from an atomic-quantum-memory compatible single photon source based on GaAs droplet quantum dots. Appl. Phys. Lett. 113, 021102 (2018).

    Article  CAS  Google Scholar 

  68. Basso Basset, F. et al. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy. Nano Lett. 18, 505–512 (2018).

    Article  CAS  Google Scholar 

  69. Abbarchi, M. et al. Spectral diffusion and line broadening in single self-assembled GaAsAlGaAs quantum dot photoluminescence. Appl. Phys. Lett. 93, 162101 (2008).

    Article  CAS  Google Scholar 

  70. Wang, Z. M., Holmes, K., Mazur, Y. I., Ramsey, K. A. & Salamo, G. J. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy. Nanoscale Res. Lett. 1, 57–61 (2006).

    Article  CAS  Google Scholar 

  71. Heyn, C., Stemmann, A. & Hansen, W. Dynamics of self-assembled droplet etching. Appl. Phys. Lett. 95, 173110 (2009).

    Article  CAS  Google Scholar 

  72. Heyn, C., Bartsch, T., Sanguinetti, S., Jesson, D. & Hansen, W. Dynamics of mass transport during nanohole drilling by local droplet etching. Nanoscale Res. Lett. 10, 67 (2015).

    Article  CAS  Google Scholar 

  73. Wang, Z. M., Liang, B. L., Sablon, Ka & Salamo, G. J. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100). Appl. Phys. Lett. 90, 113120 (2007).

    Article  CAS  Google Scholar 

  74. Li, X. et al. Origin of nanohole formation by etching based on droplet epitaxy. Nanoscale 6, 2675–2681 (2014).

    Article  CAS  Google Scholar 

  75. Fuster, D., González, Y. & González, L. Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs(001). Nanoscale Res. Lett. 9, 309 (2014).

    Article  CAS  Google Scholar 

  76. Liang, B. L. et al. Low density InAs quantum dots grown on GaAs nanoholes. Appl. Phys. Lett. 89, 043113 (2006).

    Article  CAS  Google Scholar 

  77. Alonso-González, P. et al. Formation of lateral low density in(Ga)as quantum dot pairs in GaAs nanoholes. Cryst. Growth Des. 9, 2525–2528 (2009).

    Article  CAS  Google Scholar 

  78. Heyn, C. et al. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 94, 183113 (2009).

    Article  CAS  Google Scholar 

  79. Huo, Y. H., Rastelli, A. & Schmidt, O. G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 102, 152105 (2013).

    Article  CAS  Google Scholar 

  80. Kumar, S. et al. Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines. Appl. Phys. Lett. 99, 161118 (2011).

    Article  CAS  Google Scholar 

  81. Huo, Y. H., Křápek, V., Rastelli, A. & Schmidt, O. G. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots. Phys. Rev. B 90, 041304(R) (2014).

    Article  CAS  Google Scholar 

  82. Pfeiffer, M. et al. Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot. Nano Lett. 14, 197–201 (2014).

    Article  CAS  Google Scholar 

  83. Kuroda, T. et al. Symmetric quantum dots as efficient sources of highly entangled photons: violation of Bell’s inequality without spectral and temporal filtering. Phys. Rev. B 88, 041306 (2013).

    Article  CAS  Google Scholar 

  84. Wu, J. & Wang, Z. M. Droplet epitaxy for advanced optoelectronic materials and devices. J. Phys. D. Appl. Phys. 47, 173001 (2014).

    Article  CAS  Google Scholar 

  85. Abbarchi, M. et al. Photon antibunching in double quantum ring structures. Phys. Rev. B 79, 085308 (2009).

    Article  CAS  Google Scholar 

  86. Schliwa, A., Winkelnkemper, M. & Bimberg, D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of InGaAs/GaAs quantum dots. Phys. Rev. B 76, 205324 (2007).

    Article  CAS  Google Scholar 

  87. Biccari, F. et al. Temperature activated coupling in topologically distinct semiconductor nanostructures. J. Appl. Phys. 120, 134312 (2016).

    Article  CAS  Google Scholar 

  88. Huo, Y. H. et al. A light-hole exciton in a quantum dot. Nat. Phys. 10, 46–51 (2013).

    Article  CAS  Google Scholar 

  89. Belhadj, T., Amand, T., Kunold, A., Simon, C. & Kuroda, T. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett. 051111, 2010–2013 (2012).

    Google Scholar 

  90. Kumar, S. et al. Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots. Phys. Rev. B 89, 115309 (2014).

    Article  CAS  Google Scholar 

  91. Durnev, M. V. et al. Magnetic field induced valence band mixing in [111] grown semiconductor quantum dots. Phys. Rev. B 87, 085315 (2013).

    Article  CAS  Google Scholar 

  92. Vidal, M. et al. Hyperfine coupling of hole and nuclear spins in symmetric GaAs quantum dots. 94, 121302(R) (2016).

  93. Sallen, G. et al. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field. Nat. Commun. 5, 3268 (2014).

    Article  CAS  Google Scholar 

  94. Santori, C., Fattal, D., Vucković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  CAS  Google Scholar 

  95. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  CAS  Google Scholar 

  96. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  CAS  Google Scholar 

  97. Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    Article  CAS  Google Scholar 

  98. Jahn, J.-P. et al. An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Phys. Rev. B 92, 245439 (2015).

    Article  CAS  Google Scholar 

  99. Akopian, N., Wang, L., Rastelli, A., Schmidt, O. G. & Zwiller, V. Hybrid semiconductor-atomic interface : slowing down single photons from a quantum dot. Nat. Photon. 5, 230–233 (2011).

    Article  CAS  Google Scholar 

  100. Wolters, J. et al. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017).

    Article  Google Scholar 

  101. Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017).

    Article  CAS  Google Scholar 

  102. Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

    Article  CAS  Google Scholar 

  103. Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506 (2017).

    Article  CAS  Google Scholar 

  104. Hours, J., Senellart, P., Peter, E., Cavanna, A. & Bloch, J. Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot. Phys. Rev. B 71, 161306(R) (2005).

    Article  CAS  Google Scholar 

  105. Stobbe, S. et al. Large quantum dots with small oscillator strength. Phys. Rev. B 82, 233302 (2010).

    Article  CAS  Google Scholar 

  106. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    Article  CAS  Google Scholar 

  107. Heindel, T. et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010).

    Article  CAS  Google Scholar 

  108. Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photon. 4, 632–635 (2010).

    Article  CAS  Google Scholar 

  109. Stevenson, R. M. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

    Article  CAS  Google Scholar 

  110. Huang, H. et al. Electrically-pumped wavelength-tunable GaAs quantum dots interfaced with rubidium atoms. ACS Photon. 4, 868–872 (2017).

    Article  CAS  Google Scholar 

  111. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  CAS  Google Scholar 

  112. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article  CAS  Google Scholar 

  113. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).

    Article  CAS  Google Scholar 

  114. Hartmann, A., Loubies, L., Reinhardt, F. & Kapon, E. Self-limiting growth of quantum dot heterostructures on nonplanar {111}B substrates. Appl. Phys. Lett. 71, 1314–1316 (1997).

    Article  CAS  Google Scholar 

  115. Chung, T. H. et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat. Photon. 10, 782–787 (2016).

    Article  CAS  Google Scholar 

  116. Braun, T. et al. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots. AIP Adv. 4, 097128 (2014).

    Article  CAS  Google Scholar 

  117. Jamil, A. et al. On-chip generation and guiding of quantum light from a site-controlled quantum dot. Appl. Phys. Lett. 104, 101108 (2014).

    Article  CAS  Google Scholar 

  118. Jöns, K. D. et al. Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. Nano Lett. 13, 126–130 (2013).

    Article  CAS  Google Scholar 

  119. Bollani, M. et al. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates. Nanotechnology 25, 205301 (2014).

    Article  CAS  Google Scholar 

  120. Sala, E. M. et al. Ordered array of Ga droplets on GaAs(001) by local anodic oxidation. J. Vac. Sci. Technol. B 32, 061206 (2014).

    Article  CAS  Google Scholar 

  121. Buckley, S., Radulaski, M., Biermann, K. & Vučković, J. Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs. Appl. Phys. Lett. 103, 211117 (2013).

    Article  CAS  Google Scholar 

  122. Pavesi, L., Piazza, F., Henini, M. & Harrison, I. Orientation dependence of the Si doping of GaAs grown by molecular beam epitaxy. Semicond. Sci. Technol. 8, 167–171 (1999).

    Article  Google Scholar 

  123. Hilse, M., Ramsteiner, M., Breuer, S., Geelhaar, L. & Riechert, H. Incorporation of the dopants Si and Be into GaAs nanowires. Appl. Phys. Lett. 96, 94–97 (2010).

    Article  CAS  Google Scholar 

  124. Cavigli, L. et al. High temperature single photon emitter monolithically integrated on silicon. Appl. Phys. Lett. 100, 231112 (2012).

    Article  CAS  Google Scholar 

  125. Borri, P. et al. Ultralong dephasing time in {InGaAs} quantum dots. Phys. Rev. Lett. 87, 157401 (2001).

    Article  CAS  Google Scholar 

  126. Sanguinetti, S. et al. Electron-phonon interaction in individual strain-free GaAs∕Al0.3Ga0.7As quantum dots. Phys. Rev. B 73, 125342 (2006).

    Article  CAS  Google Scholar 

  127. Holmes, M. J., Choi, K., Kako, S., Arita, M. & Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014).

    Article  CAS  Google Scholar 

  128. Kako, S. et al. A gallium nitride single-photon source operating at 200 K. Nat. Mater. 5, 887–892 (2006).

    Article  CAS  Google Scholar 

  129. Jarjour, A. F. et al. Cavity-enhanced blue single-photon emission from a single InGaNGaN quantum dot. Appl. Phys. Lett. 91, 052101 (2007).

    Article  CAS  Google Scholar 

  130. Zhu, T. & Oliver, R. A. Nitride quantum light sources. EPL 113, 38001 (2016).

    Article  CAS  Google Scholar 

  131. Oliver, R. A. et al. InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal. Appl. Phys. Lett. 83, 755–757 (2003).

    Article  CAS  Google Scholar 

  132. Hönig, G. et al. Identification of electric dipole moments of excitonic complexes in nitride-based quantum dots. Phys. Rev. B 88, 045309 (2013).

    Article  CAS  Google Scholar 

  133. He, X. et al. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 17, 663–670 (2018).

    Article  CAS  Google Scholar 

  134. Dotti, N. et al. Germanium-based quantum emitters towards a time-reordering entanglement scheme with degenerate exciton and biexciton states. Phys. Rev. B 91, 205316 (2015).

    Article  CAS  Google Scholar 

  135. Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017).

    Article  CAS  Google Scholar 

  136. Lu, C.-Y. & Pan, J.-W. Quantum optics: Push-button photon entanglement. Nat. Photon. 8, 174–176 (2014).

    Article  CAS  Google Scholar 

  137. Orieux, A., Versteegh, M. A. M., Jöns, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 80, 076001 (2017).

    Article  CAS  Google Scholar 

  138. Ward, M. B. et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 5, 3316 (2014).

    Article  CAS  Google Scholar 

  139. Plumhof, J. D., Trotta, R., Rastelli, A. & Schmidt, O. G. Experimental methods of post-growth-tuning of the excitonic fine structure splitting in semiconductor quantum dots. Nanoscale Res. Lett. 7, 336 (2012).

    Article  Google Scholar 

  140. Seguin, R. et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95, 257402 (2005).

    Article  CAS  Google Scholar 

  141. Bester, G., Nair, S. & Zunger, A. Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1-xGaxAs/GaAs quantum dots. Phys. Rev. B 67, 161306(R) (2003).

    Article  CAS  Google Scholar 

  142. Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29–29 (2006).

    Article  CAS  Google Scholar 

  143. Hafenbrak, R. et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315–315 (2007).

    Article  CAS  Google Scholar 

  144. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article  CAS  Google Scholar 

  145. Trotta, R. et al. Universal recovery of the energy-level degeneracy of bright excitons in ingaas quantum dots without a structure symmetry. Phys. Rev. Lett. 109, 147401 (2012).

    Article  CAS  Google Scholar 

  146. Trotta, R. et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016).

    Article  CAS  Google Scholar 

  147. Abbarchi, M. et al. Exciton fine structure in strain-free GaAs/Al0.3Ga0.7As quantum dots: extrinsic effects. Phys. Rev. B 78, 125321 (2008).

    Article  CAS  Google Scholar 

  148. Skiba-Szymanska, J. et al. Universal growth scheme for quantum dots with low fine-structure splitting at various emission wavelengths. Phys. Rev. Appl. 8, 014013 (2017).

    Article  Google Scholar 

  149. Müller, T. et al. A quantum light-emitting diode for the standard telecom window around 1,550 nm. Nat. Commun. 9, 862 (2018).

    Article  CAS  Google Scholar 

  150. Hudson, A. J. et al. Coherence of an entangled exciton-photon state. Phys. Rev. Lett. 99, 266802 (2007).

    Article  CAS  Google Scholar 

  151. Huber, D. et al. Strain-tunable GaAs quantum dot: an on-demand source of nearly-maximally entangled photon pairs. Phys. Rev. Lett. 121, 033902 (2018).

    Article  CAS  Google Scholar 

  152. Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

    Article  CAS  Google Scholar 

  153. Keizer, J. G. et al. Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 96, 062101 (2010).

    Article  CAS  Google Scholar 

  154. Sanguinetti, S. et al. Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer. J. Cryst. Growth 253, 71–76 (2003).

    Article  CAS  Google Scholar 

  155. Atkinson, P., Zallo, E. & Schmidt, O. G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J. Appl. Phys. 112, 054303 (2012).

    Article  CAS  Google Scholar 

  156. Sallen, G. et al. Dark-bright mixing of interband transitions in symmetric semiconductor quantum dots. Phys. Rev. Lett. 107, 166604 (2011).

    Article  CAS  Google Scholar 

  157. Yerino, C. D. et al. Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting. Appl. Phys. Lett. 105, 251901 (2014).

    Article  CAS  Google Scholar 

  158. Langbein, W. et al. Control of fine-structure splitting and biexciton binding in InGaAs quantum dots by annealing. Phys. Rev. B 69, 161301 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Sanguinetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurioli, M., Wang, Z., Rastelli, A. et al. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 18, 799–810 (2019). https://doi.org/10.1038/s41563-019-0355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0355-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing