Droplet epitaxy of semiconductor nanostructures for quantum photonic devices

Subjects

Abstract

The long dreamed ‘quantum internet’ would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots (QDs) are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor QDs, or ‘artificial atoms’—namely, the Stranski–Krastanov (SK) and the droplet epitaxy (DE) methods. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, local droplet etching (LDE), as complementary routes to obtain high-quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometimes even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the achievements and challenges that are still open, in view of applications in quantum communication and technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Droplet epitaxy.
Fig. 2: Droplet epitaxy quantum dots.

Adapted from ref. 153, AIP (a); and ref. 154, Elsevier (c)

Fig. 3: Local droplet etching.

Courtesy of David Fuster, Instituto de Micro y Nanotecnología—CNM, CSIC (e,f). Reproduced from ref. 155, AIP (g)

Fig. 4: Quantum photonics.

Adapted from ref. 156, APS (b); ref. 102, AIP (d); ref. 103, SNL (e); ref. 101, American Chemical Society (f,g); and ref. 110, American Chemical Society (h). Courtesy of Eden Figueroa, Stony Brook University (c)

Fig. 5: Entangled photons from symmetric quantum dots.

Adapted from ref. 79, AIP (b); ref. 29, SNL (c); ref. 103, SNL (d,e); and ref. 151, APS (d,e)

References

  1. 1.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Google Scholar 

  2. 2.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Orieux, A., Versteegh, M. A. M., Jons, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation : a review. Rep. Prog. Phys. 80, 076001 (2017).

    Article  CAS  Google Scholar 

  4. 4.

    Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    Minář, J., De Riedmatten, H., Simon, C., Zbinden, H. & Gisin, N. Phase-noise measurements in long-fiber interferometers for quantum-repeater applications. Phys. Rev. A 77, 052325 (2008).

    Article  CAS  Google Scholar 

  7. 7.

    Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    CAS  Article  Google Scholar 

  8. 8.

    Acín, A., Gisin, N. & Masanes, L. From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006).

    Article  CAS  Google Scholar 

  9. 9.

    Pironio, S. et al. Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009).

    Article  Google Scholar 

  10. 10.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Orieux, A., Versteegh, M. A. M., Jöns, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 80, 076001 (2017).

    Article  CAS  Google Scholar 

  12. 12.

    Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    Arakawa, Y., Sasaki, H. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    CAS  Article  Google Scholar 

  14. 14.

    Michler, P. et al. A Quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  CAS  Google Scholar 

  17. 17.

    Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Shields, A. J. Semiconductor quantum light sources. Nat. Photon. 1, 215–223 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Cibert, J. et al. Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes. Appl. Phys. Lett. 49, 1275–1277 (1986).

    CAS  Article  Google Scholar 

  20. 20.

    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    Eaglesham, D. & Cerullo, M. Dislocation-free stranski-krastanow growth of Ge on Si (100). Phys. Rev. Lett. 64, 1943–1946 (1990).

    CAS  Article  Google Scholar 

  22. 22.

    Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P. & Petroff, P. M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 63, 3203–3205 (1993).

    CAS  Article  Google Scholar 

  23. 23.

    Koguchi, N., Takahashi, S. & Chikyow, T. New MBE growth method for InSb quantum well boxes. J. Cryst. Growth 111, 688–692 (1991).

    CAS  Article  Google Scholar 

  24. 24.

    Bhattacharya, A. & Bansa, B. in Handbook of Crystal Growth Vol 3 (ed. Kuech, T. F.) 1057 (Elsevier, 2015).

  25. 25.

    Shchukin, V. A., Ledentsov, N. N. & Bimberg, D. Epitaxy of Nanostructures (Springer, 2003).

  26. 26.

    Tartakovskii, A. I. Quantum Dots: Optics, Electron Transport and Future Applications (Cambridge Univ. Press, 2012).

  27. 27.

    Costantini, G. et al. Universal shapes of self-organized semiconductor quantum dots: striking similarities between InAs∕GaAs(001) and Ge∕Si(001). Appl. Phys. Lett. 85, 5673–5675 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    Rastelli, A. et al. Three-dimensional composition profiles of single quantum dots determined by scanning-probe-microscopy-based nanotomography. Nano Lett. 8, 1404–1409 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Keil, R. et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun. 8, 15501 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Watanabe, K., Koguchi, N. & Gotoh, Y. Fabrication of GaAs quantum dots by modified droplet epitaxy. Jpn. J. Appl. Phys. 39, L79 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Mano, T. et al. Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy. Appl. Phys. Lett. 76, 3543–3545 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    Somaschini, C. et al. Self-assembled GaAs islands on Si by droplet epitaxy. Appl. Phys. Lett. 97, 053101 (2010).

    Article  CAS  Google Scholar 

  33. 33.

    Kawazu, T., Mano, T., Noda, T. & Sakaki, H. Optical properties of GaSb/GaAs type-II quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 94, 081911 (2009).

    Article  CAS  Google Scholar 

  34. 34.

    Schupp, T. et al. Droplet epitaxy of zinc-blende GaN quantum dots. J. Cryst. Growth 312, 3235–3237 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Prongjit, P. et al. Type-II recombination dynamics of tensile-strained GaP quantum dots in GaAs grown by droplet epitaxy. Appl. Phys. Lett. 109, 171902 (2016).

    Article  CAS  Google Scholar 

  36. 36.

    Watanabe, K., Koguchi, N. & Gotoh, Y. Fabrication of GaAs quantum dots by modified droplet epitaxy. Jpn. J. Appl. Phys. 39, L79 (2000).

    CAS  Article  Google Scholar 

  37. 37.

    Markov, I. V. Crystal Growth for Beginners (World Scientific, 1995).

  38. 38.

    Reyes, K. et al. Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory. Phys. Rev. B 87, 165406 (2013).

    Article  CAS  Google Scholar 

  39. 39.

    Heyn, C. et al. Regimes of GaAs quantum dot self-assembly by droplet epitaxy. Phys. Rev. B 76, 75317 (2007).

    Article  CAS  Google Scholar 

  40. 40.

    Jo, M., Mano, T., Sakuma, Y. & Sakoda, K. Extremely high-density GaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 100, 212113 (2012).

    Article  CAS  Google Scholar 

  41. 41.

    Venables, J. A. Atomic processes in crystal growth. Surf. Sci. 299–300, 798–817 (1994).

    Article  Google Scholar 

  42. 42.

    Floro, J., Chason, E., Twesten, R., Hwang, R. & Freund, L. SiGe coherent islanding and stress relaxation in the high mobility regime. Phys. Rev. Lett. 79, 3946–3949 (1997).

    CAS  Article  Google Scholar 

  43. 43.

    Watanabe, K., Tsukamoto, S., Gotoh, Y. & Koguchi, N. Photoluminescence studies of GaAs quantum dots grown by droplet epitaxy. J. Cryst. Growth 227–228, 1073–1077 (2001).

    Article  Google Scholar 

  44. 44.

    Somaschini, C., Bietti, S., Koguchi, N. & Sanguinetti, S. Fabrication of multiple concentric nanoring structures. Nano Lett. 9, 3419–24 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Bietti, S., Somaschini, C. & Sanguinetti, S. Crystallization kinetics of Ga metallic nano-droplets under As flux. Nanotechnology 24, 205603 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Jo, M., Mano, T., Abbarchi, M., Kuroda, T. & Sakuma, Y. Self-limiting growth of hexagonal and triangular quantum dots on (111)A. Cryst. Growth Des. 12, 1411–1415 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Bietti, S., Somaschini, C., Esposito, L., Fedorov, A. & Sanguinetti, S. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets. J. Appl. Phys. 116, 114311 (2014).

    Article  CAS  Google Scholar 

  48. 48.

    Inoue, N. MBE monolayer growth control by in-situ electron microscopy. J. Cryst. Growth 111, 75–82 (1991).

    CAS  Article  Google Scholar 

  49. 49.

    Mano, T. et al. Self-assembly of concentric quantum double rings. Nano Lett. 5, 425–428 (2005).

    CAS  Article  Google Scholar 

  50. 50.

    Somaschini, C., Bietti, S., Koguchi, N. & Sanguinetti, S. Coupled quantum dot–ring structures by droplet epitaxy. Nanotechnology 22, 185602 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    Sato, K., Fahy, M. R. & Joyce, B. A. Reflection high energy electron diffraction intensity oscillation study of the growth of GaAs on GaAs(111)A. Surf. Sci. 315, 105–111 (1994).

    CAS  Article  Google Scholar 

  52. 52.

    Bietti, S. et al. Precise shape engineering of epitaxial quantum dots by growth kinetics. Phys. Rev. B 92, 075425 (2015).

    Article  CAS  Google Scholar 

  53. 53.

    Mantovani, V. et al. Low density GaAs∕AlGaAs quantum dots grown by modified droplet epitaxy. J. Appl. Phys. 96, 4416–4420 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    Strauf, S. et al. High-frequency single-photon source with polarization control. Nat. Photon. 1, 704–708 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    Martyniuk, P. & Rogalski, A. Quantum-dot infrared photodetectors: status and outlook. Prog. Quantum Electron. 32, 89–120 (2008).

    Article  Google Scholar 

  56. 56.

    Mellor, A. et al. The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells. Appl. Phys. Lett. 101, 133909 (2012).

    Article  CAS  Google Scholar 

  57. 57.

    Koguchi, N., Takahashi, S. & Chikyow, T. New MBE growth method for InSb quantum well boxes. J. Cryst. Growth 111, 688–692 (1991).

    CAS  Article  Google Scholar 

  58. 58.

    Urbańczyk, A., Hamhuis, G. J. & Nötzel, R. Strain-driven alignment of In nanocrystals on InGaAs quantum dot arrays and coupled plasmon-quantum dot emission. Appl. Phys. Lett. 96, 113101 (2010).

    Article  CAS  Google Scholar 

  59. 59.

    Mano, T. et al. Self-assembly of symmetric GaAs quantum dots on (111)A substrates: suppression of fine-structure splitting. Appl. Phys. Express 3, 065203 (2010).

    Article  CAS  Google Scholar 

  60. 60.

    Liu, X. et al. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy. Phys. Rev. B 90, 081301(R) (2014).

    Article  CAS  Google Scholar 

  61. 61.

    Ohtake, a, Ozeki, M. & Nakamura, J. Strain relaxation in InAs/GaAs(111)A heteroepitaxy. Phys. Rev. Lett. 84, 4665–4668 (2000).

    CAS  Article  Google Scholar 

  62. 62.

    Sanguinetti, S. et al. Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer. J. Cryst. Growth 253, 71–76 (2002).

    Article  CAS  Google Scholar 

  63. 63.

    Sanguinetti, S. et al. Carrier thermal escape and retrapping in self-assembled quantum dots. Phys. Rev. B 60, 8276–8283 (1999).

    CAS  Article  Google Scholar 

  64. 64.

    Somaschini, C., Bietti, S., Koguchi, N. & Sanguinetti, S. Shape control via surface reconstruction kinetics of droplet epitaxy nanostructures. Appl. Phys. Lett. 97, 203109 (2010).

    Article  CAS  Google Scholar 

  65. 65.

    Zhou, Z. Y., Zheng, C. X., Tang, W. X., Tersoff, J. & Jesson, D. E. Origin of quantum ring formation during droplet epitaxy. Phys. Rev. Lett. 111, 036102 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    Mano, T. et al. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy. Nanotechnology 20, 395601 (2009).

    CAS  Article  Google Scholar 

  67. 67.

    Tripathi, L. N. et al. Resonance fluorescence from an atomic-quantum-memory compatible single photon source based on GaAs droplet quantum dots. Appl. Phys. Lett. 113, 021102 (2018).

    Article  CAS  Google Scholar 

  68. 68.

    Basso Basset, F. et al. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy. Nano Lett. 18, 505–512 (2018).

    CAS  Article  Google Scholar 

  69. 69.

    Abbarchi, M. et al. Spectral diffusion and line broadening in single self-assembled GaAsAlGaAs quantum dot photoluminescence. Appl. Phys. Lett. 93, 162101 (2008).

    Article  CAS  Google Scholar 

  70. 70.

    Wang, Z. M., Holmes, K., Mazur, Y. I., Ramsey, K. A. & Salamo, G. J. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy. Nanoscale Res. Lett. 1, 57–61 (2006).

    Article  CAS  Google Scholar 

  71. 71.

    Heyn, C., Stemmann, A. & Hansen, W. Dynamics of self-assembled droplet etching. Appl. Phys. Lett. 95, 173110 (2009).

    Article  CAS  Google Scholar 

  72. 72.

    Heyn, C., Bartsch, T., Sanguinetti, S., Jesson, D. & Hansen, W. Dynamics of mass transport during nanohole drilling by local droplet etching. Nanoscale Res. Lett. 10, 67 (2015).

    Article  CAS  Google Scholar 

  73. 73.

    Wang, Z. M., Liang, B. L., Sablon, Ka & Salamo, G. J. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100). Appl. Phys. Lett. 90, 113120 (2007).

    Article  CAS  Google Scholar 

  74. 74.

    Li, X. et al. Origin of nanohole formation by etching based on droplet epitaxy. Nanoscale 6, 2675–2681 (2014).

    CAS  Article  Google Scholar 

  75. 75.

    Fuster, D., González, Y. & González, L. Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs(001). Nanoscale Res. Lett. 9, 309 (2014).

    Article  CAS  Google Scholar 

  76. 76.

    Liang, B. L. et al. Low density InAs quantum dots grown on GaAs nanoholes. Appl. Phys. Lett. 89, 043113 (2006).

    Article  CAS  Google Scholar 

  77. 77.

    Alonso-González, P. et al. Formation of lateral low density in(Ga)as quantum dot pairs in GaAs nanoholes. Cryst. Growth Des. 9, 2525–2528 (2009).

    Article  CAS  Google Scholar 

  78. 78.

    Heyn, C. et al. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 94, 183113 (2009).

    Article  CAS  Google Scholar 

  79. 79.

    Huo, Y. H., Rastelli, A. & Schmidt, O. G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 102, 152105 (2013).

    Article  CAS  Google Scholar 

  80. 80.

    Kumar, S. et al. Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines. Appl. Phys. Lett. 99, 161118 (2011).

    Article  CAS  Google Scholar 

  81. 81.

    Huo, Y. H., Křápek, V., Rastelli, A. & Schmidt, O. G. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots. Phys. Rev. B 90, 041304(R) (2014).

    Article  CAS  Google Scholar 

  82. 82.

    Pfeiffer, M. et al. Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot. Nano Lett. 14, 197–201 (2014).

    CAS  Article  Google Scholar 

  83. 83.

    Kuroda, T. et al. Symmetric quantum dots as efficient sources of highly entangled photons: violation of Bell’s inequality without spectral and temporal filtering. Phys. Rev. B 88, 041306 (2013).

    Article  CAS  Google Scholar 

  84. 84.

    Wu, J. & Wang, Z. M. Droplet epitaxy for advanced optoelectronic materials and devices. J. Phys. D. Appl. Phys. 47, 173001 (2014).

    Article  CAS  Google Scholar 

  85. 85.

    Abbarchi, M. et al. Photon antibunching in double quantum ring structures. Phys. Rev. B 79, 085308 (2009).

    Article  CAS  Google Scholar 

  86. 86.

    Schliwa, A., Winkelnkemper, M. & Bimberg, D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of InGaAs/GaAs quantum dots. Phys. Rev. B 76, 205324 (2007).

    Article  CAS  Google Scholar 

  87. 87.

    Biccari, F. et al. Temperature activated coupling in topologically distinct semiconductor nanostructures. J. Appl. Phys. 120, 134312 (2016).

    Article  CAS  Google Scholar 

  88. 88.

    Huo, Y. H. et al. A light-hole exciton in a quantum dot. Nat. Phys. 10, 46–51 (2013).

    CAS  Article  Google Scholar 

  89. 89.

    Belhadj, T., Amand, T., Kunold, A., Simon, C. & Kuroda, T. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett. 051111, 2010–2013 (2012).

    Google Scholar 

  90. 90.

    Kumar, S. et al. Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots. Phys. Rev. B 89, 115309 (2014).

    Article  CAS  Google Scholar 

  91. 91.

    Durnev, M. V. et al. Magnetic field induced valence band mixing in [111] grown semiconductor quantum dots. Phys. Rev. B 87, 085315 (2013).

    Article  CAS  Google Scholar 

  92. 92.

    Vidal, M. et al. Hyperfine coupling of hole and nuclear spins in symmetric GaAs quantum dots. 94, 121302(R) (2016).

  93. 93.

    Sallen, G. et al. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field. Nat. Commun. 5, 3268 (2014).

    CAS  Article  Google Scholar 

  94. 94.

    Santori, C., Fattal, D., Vucković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    CAS  Article  Google Scholar 

  95. 95.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    CAS  Article  Google Scholar 

  96. 96.

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  CAS  Google Scholar 

  97. 97.

    Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Jahn, J.-P. et al. An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Phys. Rev. B 92, 245439 (2015).

    Article  CAS  Google Scholar 

  99. 99.

    Akopian, N., Wang, L., Rastelli, A., Schmidt, O. G. & Zwiller, V. Hybrid semiconductor-atomic interface : slowing down single photons from a quantum dot. Nat. Photon. 5, 230–233 (2011).

    CAS  Article  Google Scholar 

  100. 100.

    Wolters, J. et al. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017).

    Article  Google Scholar 

  101. 101.

    Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017).

    CAS  Article  Google Scholar 

  102. 102.

    Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

    Article  CAS  Google Scholar 

  103. 103.

    Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506 (2017).

    CAS  Article  Google Scholar 

  104. 104.

    Hours, J., Senellart, P., Peter, E., Cavanna, A. & Bloch, J. Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot. Phys. Rev. B 71, 161306(R) (2005).

    Article  CAS  Google Scholar 

  105. 105.

    Stobbe, S. et al. Large quantum dots with small oscillator strength. Phys. Rev. B 82, 233302 (2010).

    Article  CAS  Google Scholar 

  106. 106.

    Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    CAS  Article  Google Scholar 

  107. 107.

    Heindel, T. et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010).

    Article  CAS  Google Scholar 

  108. 108.

    Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photon. 4, 632–635 (2010).

    CAS  Article  Google Scholar 

  109. 109.

    Stevenson, R. M. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

    CAS  Article  Google Scholar 

  110. 110.

    Huang, H. et al. Electrically-pumped wavelength-tunable GaAs quantum dots interfaced with rubidium atoms. ACS Photon. 4, 868–872 (2017).

    CAS  Article  Google Scholar 

  111. 111.

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    CAS  Article  Google Scholar 

  112. 112.

    Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    CAS  Article  Google Scholar 

  113. 113.

    Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).

    CAS  Article  Google Scholar 

  114. 114.

    Hartmann, A., Loubies, L., Reinhardt, F. & Kapon, E. Self-limiting growth of quantum dot heterostructures on nonplanar {111}B substrates. Appl. Phys. Lett. 71, 1314–1316 (1997).

    CAS  Article  Google Scholar 

  115. 115.

    Chung, T. H. et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat. Photon. 10, 782–787 (2016).

    CAS  Article  Google Scholar 

  116. 116.

    Braun, T. et al. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots. AIP Adv. 4, 097128 (2014).

    Article  CAS  Google Scholar 

  117. 117.

    Jamil, A. et al. On-chip generation and guiding of quantum light from a site-controlled quantum dot. Appl. Phys. Lett. 104, 101108 (2014).

    Article  CAS  Google Scholar 

  118. 118.

    Jöns, K. D. et al. Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. Nano Lett. 13, 126–130 (2013).

    Article  CAS  Google Scholar 

  119. 119.

    Bollani, M. et al. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates. Nanotechnology 25, 205301 (2014).

    CAS  Article  Google Scholar 

  120. 120.

    Sala, E. M. et al. Ordered array of Ga droplets on GaAs(001) by local anodic oxidation. J. Vac. Sci. Technol. B 32, 061206 (2014).

    Article  CAS  Google Scholar 

  121. 121.

    Buckley, S., Radulaski, M., Biermann, K. & Vučković, J. Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs. Appl. Phys. Lett. 103, 211117 (2013).

    Article  CAS  Google Scholar 

  122. 122.

    Pavesi, L., Piazza, F., Henini, M. & Harrison, I. Orientation dependence of the Si doping of GaAs grown by molecular beam epitaxy. Semicond. Sci. Technol. 8, 167–171 (1999).

    Article  Google Scholar 

  123. 123.

    Hilse, M., Ramsteiner, M., Breuer, S., Geelhaar, L. & Riechert, H. Incorporation of the dopants Si and Be into GaAs nanowires. Appl. Phys. Lett. 96, 94–97 (2010).

    Article  CAS  Google Scholar 

  124. 124.

    Cavigli, L. et al. High temperature single photon emitter monolithically integrated on silicon. Appl. Phys. Lett. 100, 231112 (2012).

    Article  CAS  Google Scholar 

  125. 125.

    Borri, P. et al. Ultralong dephasing time in {InGaAs} quantum dots. Phys. Rev. Lett. 87, 157401 (2001).

    CAS  Article  Google Scholar 

  126. 126.

    Sanguinetti, S. et al. Electron-phonon interaction in individual strain-free GaAs∕Al0.3Ga0.7As quantum dots. Phys. Rev. B 73, 125342 (2006).

    Article  CAS  Google Scholar 

  127. 127.

    Holmes, M. J., Choi, K., Kako, S., Arita, M. & Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014).

    CAS  Article  Google Scholar 

  128. 128.

    Kako, S. et al. A gallium nitride single-photon source operating at 200 K. Nat. Mater. 5, 887–892 (2006).

    CAS  Article  Google Scholar 

  129. 129.

    Jarjour, A. F. et al. Cavity-enhanced blue single-photon emission from a single InGaNGaN quantum dot. Appl. Phys. Lett. 91, 052101 (2007).

    Article  CAS  Google Scholar 

  130. 130.

    Zhu, T. & Oliver, R. A. Nitride quantum light sources. EPL 113, 38001 (2016).

    Article  CAS  Google Scholar 

  131. 131.

    Oliver, R. A. et al. InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal. Appl. Phys. Lett. 83, 755–757 (2003).

    CAS  Article  Google Scholar 

  132. 132.

    Hönig, G. et al. Identification of electric dipole moments of excitonic complexes in nitride-based quantum dots. Phys. Rev. B 88, 045309 (2013).

    Article  CAS  Google Scholar 

  133. 133.

    He, X. et al. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 17, 663–670 (2018).

    CAS  Article  Google Scholar 

  134. 134.

    Dotti, N. et al. Germanium-based quantum emitters towards a time-reordering entanglement scheme with degenerate exciton and biexciton states. Phys. Rev. B 91, 205316 (2015).

    Article  CAS  Google Scholar 

  135. 135.

    Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017).

    CAS  Article  Google Scholar 

  136. 136.

    Lu, C.-Y. & Pan, J.-W. Quantum optics: Push-button photon entanglement. Nat. Photon. 8, 174–176 (2014).

    CAS  Article  Google Scholar 

  137. 137.

    Orieux, A., Versteegh, M. A. M., Jöns, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 80, 076001 (2017).

    Article  CAS  Google Scholar 

  138. 138.

    Ward, M. B. et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 5, 3316 (2014).

    CAS  Article  Google Scholar 

  139. 139.

    Plumhof, J. D., Trotta, R., Rastelli, A. & Schmidt, O. G. Experimental methods of post-growth-tuning of the excitonic fine structure splitting in semiconductor quantum dots. Nanoscale Res. Lett. 7, 336 (2012).

    Article  Google Scholar 

  140. 140.

    Seguin, R. et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95, 257402 (2005).

    CAS  Article  Google Scholar 

  141. 141.

    Bester, G., Nair, S. & Zunger, A. Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1-xGaxAs/GaAs quantum dots. Phys. Rev. B 67, 161306(R) (2003).

    Article  CAS  Google Scholar 

  142. 142.

    Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29–29 (2006).

    Article  CAS  Google Scholar 

  143. 143.

    Hafenbrak, R. et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315–315 (2007).

    Article  CAS  Google Scholar 

  144. 144.

    Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    CAS  Article  Google Scholar 

  145. 145.

    Trotta, R. et al. Universal recovery of the energy-level degeneracy of bright excitons in ingaas quantum dots without a structure symmetry. Phys. Rev. Lett. 109, 147401 (2012).

    CAS  Article  Google Scholar 

  146. 146.

    Trotta, R. et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016).

    CAS  Article  Google Scholar 

  147. 147.

    Abbarchi, M. et al. Exciton fine structure in strain-free GaAs/Al0.3Ga0.7As quantum dots: extrinsic effects. Phys. Rev. B 78, 125321 (2008).

    Article  CAS  Google Scholar 

  148. 148.

    Skiba-Szymanska, J. et al. Universal growth scheme for quantum dots with low fine-structure splitting at various emission wavelengths. Phys. Rev. Appl. 8, 014013 (2017).

    Article  Google Scholar 

  149. 149.

    Müller, T. et al. A quantum light-emitting diode for the standard telecom window around 1,550 nm. Nat. Commun. 9, 862 (2018).

    Article  CAS  Google Scholar 

  150. 150.

    Hudson, A. J. et al. Coherence of an entangled exciton-photon state. Phys. Rev. Lett. 99, 266802 (2007).

    CAS  Article  Google Scholar 

  151. 151.

    Huber, D. et al. Strain-tunable GaAs quantum dot: an on-demand source of nearly-maximally entangled photon pairs. Phys. Rev. Lett. 121, 033902 (2018).

    CAS  Article  Google Scholar 

  152. 152.

    Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

    CAS  Article  Google Scholar 

  153. 153.

    Keizer, J. G. et al. Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 96, 062101 (2010).

    Article  CAS  Google Scholar 

  154. 154.

    Sanguinetti, S. et al. Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer. J. Cryst. Growth 253, 71–76 (2003).

    CAS  Article  Google Scholar 

  155. 155.

    Atkinson, P., Zallo, E. & Schmidt, O. G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J. Appl. Phys. 112, 054303 (2012).

    Article  CAS  Google Scholar 

  156. 156.

    Sallen, G. et al. Dark-bright mixing of interband transitions in symmetric semiconductor quantum dots. Phys. Rev. Lett. 107, 166604 (2011).

    CAS  Article  Google Scholar 

  157. 157.

    Yerino, C. D. et al. Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting. Appl. Phys. Lett. 105, 251901 (2014).

    Article  CAS  Google Scholar 

  158. 158.

    Langbein, W. et al. Control of fine-structure splitting and biexciton binding in InGaAs quantum dots by annealing. Phys. Rev. B 69, 161301 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Sanguinetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gurioli, M., Wang, Z., Rastelli, A. et al. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 18, 799–810 (2019). https://doi.org/10.1038/s41563-019-0355-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing