Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Granular aluminium as a superconducting material for high-impedance quantum circuits

Abstract

Superconducting quantum information processing machines are predominantly based on microwave circuits with relatively low characteristic impedance, about 100 Ω, and small anharmonicity, which can limit their coherence and logic gate fidelity1,2. A promising alternative is circuits based on so-called superinductors3,4,5,6, with characteristic impedances exceeding the resistance quantum RQ = 6.4 kΩ. However, previous implementations of superinductors, consisting of mesoscopic Josephson junction arrays7,8, can introduce unintended nonlinearity or parasitic resonant modes in the qubit vicinity, degrading its coherence. Here, we present a fluxonium qubit design based on a granular aluminium superinductor strip9,10,11. We show that granular aluminium can form an effective junction array with high kinetic inductance and be in situ integrated with standard aluminium circuit processing. The measured qubit coherence time \(T_2^ \ast \le 30\,{\upmu}{\mathrm{s}}\) illustrates the potential of granular aluminium for applications ranging from protected qubit designs to quantum-limited amplifiers and detectors.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fluxonium qubit built using a grAl superinductor.
Fig. 2: Fluxonium and readout resonator spectroscopy obtained from the measurement of the complex reflection coefficient S11 .
Fig. 3: Quantum coherence of the fluxonium superconducting qubit with a grAl superinductor.

Data availability

All relevant data are available from the corresponding author.

References

  1. 1.

    Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y.-X. & Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1–102 (2017).

    Article  Google Scholar 

  2. 2.

    Willsch, D., Nocon, M., Jin, F., De Raedt, H. & Michielsen, K. Gate-error analysis in simulations of quantum computers with transmon qubits. Phys. Rev. A 96, 62302 (2017).

    Article  Google Scholar 

  3. 3.

    Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Pop, I. M. et al. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature 508, 369–372 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Earnest, N. et al. Realization of a Λ system with metastable states of a capacitively shunted fluxonium. Phys. Rev. Lett. 120, 150504 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Lin, Y.-H. et al. Demonstration of protection of a superconducting qubit from energy decay. Phys. Rev. Lett. 120, 150503 (2018).

    Article  Google Scholar 

  7. 7.

    Masluk, N. A., Pop, I. M., Kamal, A., Minev, Z. K. & Devoret, M. H. Microwave characterization of Josephson junction arrays: implementing a low loss superinductance. Phys. Rev. Lett. 109, 137002 (2012).

    Article  Google Scholar 

  8. 8.

    Bell, M. T., Sadovskyy, I. A., Ioffe, L. B., Kitaev, A. Y. & Gershenson, M. E. Quantum superinductor with tunable nonlinearity. Phys. Rev. Lett. 109, 137003 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Pracht, U. S. et al. Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in coupled aluminum nanograins. Phys. Rev. B 93, 100503(R) (2016).

    Article  Google Scholar 

  10. 10.

    Grünhaupt, L. et al. Loss mechanisms and quasiparticle dynamics in superconducting microwave resonators made of thin-film granular aluminum. Phys. Rev. Lett. 121, 117001 (2018).

    Article  Google Scholar 

  11. 11.

    Maleeva, N. et al. Circuit quantum electrodynamics of granular aluminum resonators. Nat. Commun. 9, 3889 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146 (2016).

    Article  Google Scholar 

  13. 13.

    Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Langford, N. K. et al. Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling. Nat. Commun. 8, 1715 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Sete, E. A., Reagor, M. J., Didier, N. & Rigetti, C. T. Charge- and flux-insensitive tunable superconducting qubit. Phys. Rev. Appl. 8, 24004 (2017).

    Article  Google Scholar 

  16. 16.

    Groszkowski, P. et al. Coherence properties of the 0-π qubit. New J. Phys. 20, 043053 (2018).

    Article  Google Scholar 

  17. 17.

    Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Landig, A. J. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Corlevi, S., Guichard, W., Hekking, F. W. J. & Haviland, D. B. Phase-charge duality of a Josephson junction in a fluctuating electromagnetic environment. Phys. Rev. Lett. 97, 96802 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    Arndt, L., Roy, A. & Hassler, F. Dual Shapiro steps of a phase-slip junction in the presence of a parasitic capacitance. Phys. Rev. B 98, 14525 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Niepce, D., Burnett, J. & Bylander, J. High kinetic inductance NbN nanowire superinductors. Phys. Rev. Appl. 11, 044014 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    Hazard, T. M. et al. Nanowire superinductance fluxonium qubit. Phys. Rev. Lett. 122, 010504 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    Peltonen, J. T. et al. Hybrid rf SQUID qubit based on high kinetic inductance. Sci. Rep. 8, 10033 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Shearrow, A. et al. Atomic layer deposition of titanium nitride for quantum circuits. Appl. Phys. Lett. 113, 212601 (2018).

    Article  Google Scholar 

  27. 27.

    Sun, L. et al. Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit. Phys. Rev. Lett. 108, 230509 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Müller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids - insights from quantum circuits. Preprint at http://arXiv.org/abs/1705.01108 (2017).

  29. 29.

    Kou, A. et al. Fluxonium-based artificial molecule with a tunable magnetic moment. Phys. Rev. X 7, 031037 (2017).

    Google Scholar 

  30. 30.

    Patel, U., Pechenezhskiy, I. V., Plourde, B. L. T., Vavilov, M. G. & McDermott, R. Phonon-mediated quasiparticle poisoning of superconducting microwave resonators. Phys. Rev. B 96, 220501 (2017).

    Article  Google Scholar 

  31. 31.

    Niemeyer, J. Eine einfache Methode zur Herstellung kleiner Josephson-Elemente. PTB-Mitt. 84, 251 (1974).

    CAS  Google Scholar 

  32. 32.

    Dolan, G. J. Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31, 337–339 (1977).

    Article  Google Scholar 

  33. 33.

    Lecocq, F. et al. Junction fabrication by shadow evaporation without a suspended bridge. Nanotechnology 22, 315302 (2011).

    Article  Google Scholar 

  34. 34.

    Deutscher, G., Fenichel, H., Gershenson, M., Grünbaum, E. & Ovadyahu, Z. Transition to zero dimensionality in granular aluminum superconducting films. J. Low Temp. Phys. 10, 231–243 (1973).

    CAS  Article  Google Scholar 

  35. 35.

    Rotzinger, H. et al. Aluminium-oxide wires for superconducting high kinetic inductance circuits. Supercond. Sci. Technol. 30, 25002 (2017).

    Article  Google Scholar 

  36. 36.

    Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  Google Scholar 

  37. 37.

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Kou, A. et al. Simultaneous monitoring of fluxonium qubits in a waveguide. Phys. Rev. Appl. 9, 64022 (2017).

    Article  Google Scholar 

  39. 39.

    Kumar, P. et al. Origin and reduction of 1/f magnetic flux noise in superconducting devices. Phys. Rev. Appl. 6, 41001 (2016).

    Article  Google Scholar 

  40. 40.

    le Sueur, H. et al. Microscopic charged fluctuators as a limit to the coherence of disordered superconductor devices. Preprint at http://arxiv.org/abs/1810.12801 (2018).

  41. 41.

    Catelani, G., Nigg, S. E., Girvin, S. M., Schoelkopf, R. J. & Glazman, L. I. Decoherence of superconducting qubits caused by quasiparticle tunneling. Phys. Rev. B 86, 184514 (2012).

    Article  Google Scholar 

  42. 42.

    Smith, W. C. et al. Fluxonium-resonator system in the nonperturbative regime. Phys. Rev. B 94, 144507 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Bilmes, J. Lisenfeld, C. Smith and M. Wildermuth for insightful discussions, and to J. Ferrero, A. Lukashenko and L. Radtke for technical assistance. Funding was provided by the Alexander von Humboldt Foundation in the framework of a Sofja Kovalevskaja award endowed by the German Federal Ministry of Education and Research, and by the Initiative and Networking Fund of the Helmholtz Association, within the Helmholtz Future Project ‘Scalable solid state quantum computing’. This work has been partially supported by the European Research Council advanced grant MoQuOS (no. 741276). I.T. and A.V.U. acknowledge partial support from the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of the National University of Science and Technology MISIS (contract no. K2-2017-081). Facilities use was supported by the KIT Nanostructure Service Laboratory. We acknowledge qKit for providing a convenient measurement software framework.

Author information

Affiliations

Authors

Contributions

L.G. and M.S. designed and fabricated the samples, and performed the measurements. D.G., S.T.S., I.T., F.V., P.W. and H.R. contributed to the sample fabrication effort. L.G. and M.S. analysed the data with help from N.M., W.W. and A.V.U. L.G., M.S. and I.M.P. led the paper writing, while all other authors contributed to the text. I.M.P. supervised and coordinated the project.

Corresponding author

Correspondence to Ioan M. Pop.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Notes 1–9 and refs. 1–9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grünhaupt, L., Spiecker, M., Gusenkova, D. et al. Granular aluminium as a superconducting material for high-impedance quantum circuits. Nat. Mater. 18, 816–819 (2019). https://doi.org/10.1038/s41563-019-0350-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing