Rapid progress in machine learning is enabling opportunities for improved clinical decision support. Importantly, however, developing, validating and implementing machine learning models for healthcare entail some particular considerations to increase the chances of eventually improving patient care.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The past, current, and future of neonatal intensive care units with artificial intelligence: a systematic review
npj Digital Medicine Open Access 27 November 2023
-
A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future
Aging Clinical and Experimental Research Open Access 08 September 2023
-
Preoperative prediction of sinonasal papilloma by artificial intelligence using nasal video endoscopy: a retrospective study
Scientific Reports Open Access 02 August 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).
Gulshan, V. et al. JAMA 316, 2402–2410 (2016).
Esteva, A. et al. Nature 542, 115–118 (2017).
Krause, J. et al. Ophthalmology 125, 1264–1272 (2018).
Ehteshami Bejnordi, B. et al. JAMA 318, 2199–2210 (2017).
Poplin, R. et al. Nat. Biomed. Eng. 2, 158–164 (2018).
Ting, D. S. W. & Wong, T. Y. Nat. Biomed. Eng. 2, 140–141 (2018).
Xu, K. et al. Preprint at https://arxiv.org/abs/1502.03044 (2015).
Moher, D. et al. BMJ 340, c869 (2010).
Japkowicz, N. & Stephen, S. Intell. Data Anal. 6, 429–449 (2002).
Rajkomar, A. et al. npj Digit. Med. 1, 18 (2018).
Ren, S., He, K., Girshick, R. & Sun, J. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017).
Liu, Y. et al. Arch. Pathol. Lab. Med. https://doi.org/10.5858/arpa.2018-0147-OA (2018).
Steiner, D. F. et al. Am. J. Surg. Pathol. 42, 1636–1646 (2018).
De Fauw, J. et al. Nat. Med. 24, 1342–1350 (2018).
Sofka, M., Milletari, F., Jia, J. & Rothberg, A. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (eds Cardoso, J. et al.) 258–266 (Springer, 2017).
Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Preprint at https://arxiv.org/abs/1707.07012 (2017).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. in IEEE Conference on Computer Vision and Pattern Recognition 4510–4520 (IEEE, 2018).
Bishop, C. Pattern Recognition and Machine Learning (Springer, 2006).
Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Preprint at https://arxiv.org/abs/1611.03530 (2016).
Bergstra, J. & Bengio, Y. J. Mach. Learn. Res. 13, 281–305 (2012).
ILSVRC http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015 (2 June 2015).
Alba, A. C. et al. JAMA 318, 1377–1384 (2017).
Niculescu-Mizil, A. & Caruana, R. in Proc. 22nd International Conference on Machine Learning 625–632 (ACM, 2005).
Thabane, L. et al. BMC Med. Res. Methodol. 13, 92 (2013).
Parikh, R., Mathai, A., Parikh, S., Chandra Sekhar, G. & Thomas, R. Indian J. Ophthalmol. 56, 45–50 (2008).
van Smeden, M., Van Calster, B. & Groenwold, R. H. H. JAMA 319, 1725–1726 (2018).
Sayres, R. et al. Ophthalmology 126, 552–564 (2018).
Graham, K. C. & Cvach, M. Am. J. Crit. Care 19, 28–34 (2010).
Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. npj Digit. Med. 1, 39 (2018).
Shlens, J. Google AI Blog https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html (2016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, PH.C., Liu, Y. & Peng, L. How to develop machine learning models for healthcare. Nat. Mater. 18, 410–414 (2019). https://doi.org/10.1038/s41563-019-0345-0
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-019-0345-0
This article is cited by
-
ORIENTATE: automated machine learning classifiers for oral health prediction and research
BMC Oral Health (2023)
-
Predicting sepsis onset using a machine learned causal probabilistic network algorithm based on electronic health records data
Scientific Reports (2023)
-
Preoperative prediction of sinonasal papilloma by artificial intelligence using nasal video endoscopy: a retrospective study
Scientific Reports (2023)
-
The past, current, and future of neonatal intensive care units with artificial intelligence: a systematic review
npj Digital Medicine (2023)
-
Using machine learning to explore the determinants of service satisfaction with online healthcare platforms during the COVID-19 pandemic
Service Business (2023)