Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam


Recent reports of hot-electron-induced dissociation of small molecules, such as hydrogen, demonstrate the potential application of plasmonic nanostructures for harvesting light to initiate catalytic reactions. Theories have assumed that plasmonic catalysis is mediated by the energy transfer from nanoparticles to adsorbed molecules during the dephasing of localized surface plasmon (LSP) modes optically excited on plasmonic nanoparticles. However, LSP-induced chemical processes have not been resolved at a sub-nanoparticle scale to identify the active sites responsible for the energy transfer. Here, we exploit the LSP resonance excited by electron beam on gold nanoparticles to drive CO disproportionation at room temperature in an environmental scanning transmission electron microscope. Using in situ electron energy-loss spectroscopy with a combination of density functional theory and electromagnetic boundary element method calculations, we show at the subparticle level that the active sites on gold nanoparticles are where preferred gas adsorption sites and the locations of maximum LSP electric field amplitude (resonance antinodes) superimpose. Our findings provide insight into plasmonic catalysis and will be valuable in designing plasmonic antennas for low-temperature catalytic processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: DFT-calculation-based choice of Au nanoprisms supported by TiO2 particles to realize a variety of local CO adsorption probabilities.
Fig. 2: Simulated electron-energy loss probability and induced electric field originating from electron-beam-excited LSP resonance on a Au nanoprism on TiO2 in a cantilevered configuration.
Fig. 3: EELS measurements of electron-beam-excited LSP resonance on a Au nanoprism on TiO2 in a cantilevered configuration.
Fig. 4: Effect of CO adsorption on LSP resonance energy.
Fig. 5: CO disproportionation reaction driven by electron-beam-excited LSP resonance.

Data availability

All relevant data are available from the corresponding author upon request.


  1. 1.

    Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Zhou, L. et al. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett. 16, 1478–1484 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Hartland, G. V., Besteiro, L. V., Johns, P. & Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2, 1641–1653 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2013).

    Article  Google Scholar 

  7. 7.

    Colliex, C., Kociak, M. & Stephan, O. Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162, A1–A24 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Schmidt, F. P., Ditlbacher, H., Hofer, F., Krenn, J. R. & Hohenester, U. Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett. 14, 4810–4815 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Lanzani, G., Nasibulin, A. G., Laasonen, K. & Kauppinen, E. I. CO dissociation and CO+O reactions on a nanosized iron cluster. Nano Res. 2, 660–670 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Vedyagin, A. A., Mishakov, I. V. & Tsyrulnikov, P. G. The features of the CO disproportionation reaction over iron-containing catalysts prepared by different methods. React. Kinet. Mech. Catal. 117, 35–46 (2015).

    Article  Google Scholar 

  12. 12.

    Sharma, R. An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J. Mater. Res. 20, 1695–1707 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    Egerton, R. F. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575–586 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    Lopez, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223, 232–235 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    Hohenester, U. Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. 185, 1177–1187 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Hohenester, U., Ditlbacher, H. & Krenn, J. R. Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 103, 106801 (2009).

    Article  Google Scholar 

  17. 17.

    Garcia de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    Crozier, P. A. Vibrational and valence aloof beam EELS: a potential tool for nondestructive characterization of nanoparticle surfaces. Ultramicroscopy 180, 104–114 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Losquin, A. & Kociak, M. Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states. ACS Photon. 2, 1619–1627 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Boudarham, G. & Kociak, M. Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes. Phys. Rev. B 85, 245447 (2012).

    Article  Google Scholar 

  21. 21.

    Hartshorn, H., Pursell, C. J. & Chandler, B. D. Adsorption of CO on supported gold nanoparticle catalysts: a comparative study. J. Phys. Chem. C 113, 10718–10725 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Chenna, S. & Crozier, P. A. Operando transmission electron microscopy: a technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal. 2, 2395–2402 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Garvie, L. A. J., Craven, A. J. & Brydson, R. Use of electron-energy-loss near-edge fine-structure in the study of minerals. Am. Mineral 79, 411–425 (1994).

    CAS  Google Scholar 

  24. 24.

    Green, I. X., Tang, W. J., Neurock, M. & Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Chavez, S., Aslam, U. & Linic, S. Design principles for directing energy and energetic charge flow in multicomponent plasmonic nanostructures. ACS Energy Lett. 3, 1590–1596 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A.III. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Foerster, B. et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11, 2886–2893 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Swearer, D. F. et al. Heterometallic antenna-reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  35. 35.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  37. 37.

    Jiang, D. E. & Carter, E. A. Adsorption and dissociation of CO on Fe(110) from first principles. Surf. Sci. 570, 167–177 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Sau, T. K. & Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126, 8648–8649 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    Hohenester, U. & Trügler, A. MNPBEM—a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).

    CAS  Article  Google Scholar 

Download references


The authors thank R. Egerton (University of Alberta), P. Batson (Rutgers University), U. Hohenester (Karl-Franzens-Universität Graz), P. Longo (Gatan), Q. Qiao (Temple University), J. Kohoutek (NIST) and A. Herzing (NIST) for useful discussions. W.D.Y., P.A.L. and C.W. acknowledge support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Physical Measurement Laboratory, award 70NANB14H209, through the University of Maryland.

Author information




W.D.Y., C.W., P.A.L., and R.S. conceived and designed the research. W.D.Y. and P.A.L. fabricated the gold antennas. W.D.Y. conducted in situ measurements in the ESTEM and processed the data. W.D.Y. and P.A.L. determined the crystallographic structure of the gold antennas. L.A.F. carried out DFT calculations. W.D.Y., L.S. and H.J.L. carried out electromagnetic BEM calculations. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Renu Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Supplementary Tables 1,2, Supplementary refs. 1–15

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, W.D., Wang, C., Fredin, L.A. et al. Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam. Nat. Mater. 18, 614–619 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing