Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Leveraging machine vision in cell-based diagnostics to do more with less

Highly quantitative, robust, single-cell analyses can help to unravel disease heterogeneity and lead to clinical insights, particularly for complex and chronic diseases. Advances in computer vision and machine learning can empower label-free cell-based diagnostics to capture subtle disease states.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Valuable information is hidden in label-free images.
Fig. 2: AI-powered point-of-care diagnostics usher in the era of precision medicine.


  1. Stavrakis, S., Holzner, G., Choo, J. & deMello, A. Curr. Opin. Biotechnol. 55, 36–43 (2018).

    Article  Google Scholar 

  2. Shields, C. W. IV, Reyes, C. D. & López, G. P. Lab Chip 15, 1230–1249 (2015).

    Article  Google Scholar 

  3. Gholizadeh, S. et al. Biosens. Bioelectron. 91, 588–605 (2017).

    Article  CAS  Google Scholar 

  4. Reátegui, E. et al. Nat. Commun. 9, 175 (2018).

    Article  Google Scholar 

  5. Djuric, U., Zadeh, G., Aldape, K. & Diamandis, P. npj Precis Oncol. 1, 22 (2017).

    Article  Google Scholar 

  6. Murphy, R. F. Nat. Chem. Biol. 7, 327–330 (2011).

    Article  CAS  Google Scholar 

  7. Ching, T. et al. J. R. Soc. Interface 15, 20170387 (2018).

    Article  Google Scholar 

  8. LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  9. Blasi, T. et al. Nat. Commun. 7, 10256 (2016).

    Article  CAS  Google Scholar 

  10. Hennig, H. et al. Methods 112, 201–210 (2017).

    Article  CAS  Google Scholar 

  11. Eulenberg, P. et al. Nat. Commun. 8, 463 (2017).

    Article  Google Scholar 

  12. Coudray, N. et al. Nat. Med. 24, 1559–1567 (2018).

    Article  CAS  Google Scholar 

  13. Christiansen, E. M. et al. Cell 173, 792–803 (2018).

    Article  CAS  Google Scholar 

  14. Ounkomol, C., Seshamani, S., Maleckar, M. M., Collman, F. & Johnson, G. R. Nat. Methods 15, 917–920 (2018).

    Article  CAS  Google Scholar 

  15. Damond, N. et al. Cell Metab. 29, 755–768 (2019).

    Article  CAS  Google Scholar 

  16. Brasko, C. et al. Nat. Commun. 9, 226 (2018).

    Article  Google Scholar 

  17. Ota, S. et al. Science 360, 1246–1251 (2018).

    Article  CAS  Google Scholar 

  18. Nitta, N. et al. Cell 175, 266–276 (2018).

    Article  CAS  Google Scholar 

  19. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. Science 359, 1361–1365 (2018).

    Article  CAS  Google Scholar 

  20. Snodgrass, R. et al. Nat. Biom. Eng. 2, 657–665 (2018).

    Article  Google Scholar 

  21. Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Nat. Biotechnol. 35, 640–646 (2017).

    Article  CAS  Google Scholar 

  22. Ma, S., Murphy, T. W. & Lu, C. Biomicrofluidics 11, 021501 (2017).

    Article  Google Scholar 

  23. Freudiger, C. W. et al. Science 322, 1857–1861 (2008).

    Article  CAS  Google Scholar 

  24. Orringer, D. A. et al. Nat. Biomed. Eng. 1, 0027 (2017).

    Article  Google Scholar 

  25. Lei, C. et al. Nat. Protoc. 13, 1603–1631 (2018).

    Article  CAS  Google Scholar 

  26. Chen, C. L. et al. Sci. Rep. 6, 21471 (2016).

    Article  CAS  Google Scholar 

  27. Castelvecchi, D. Nature 538, 20–23 (2016).

    Article  CAS  Google Scholar 

  28. Bau, D., Zhou, B., Khosla, A., Oliva, A. & Torralba, A. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3319–3327 (IEEE, 2017).

  29. Olah, C., Mordvintsev, A. & Schubert, L. Distill 2, e7 (2017).

    Google Scholar 

  30. Topol, E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Basic Books, 2019).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Minh Doan.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, M., Carpenter, A.E. Leveraging machine vision in cell-based diagnostics to do more with less. Nat. Mater. 18, 414–418 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing