Integration of bulk materials with two-dimensional materials for physical coupling and applications

Abstract

Hybrid heterostructures are essential for functional device systems. The advent of 2D materials has broadened the material set beyond conventional 3D material-based heterostructures. It has triggered the fundamental investigation and use in applications of new coupling phenomena between 3D bulk materials and 2D atomic layers that have unique van der Waals features. Here we review the state-of-the-art fabrication of 2D and 3D heterostructures, present a critical survey of unique phenomena arising from forming 3D/2D interfaces, and introduce their applications. We also discuss potential directions for research based on these new coupled architectures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: 3D/2D structures and fabrication methods.
Fig. 2: Van der Waals epitaxy of various materials on 2D materials.
Fig. 3: Remote epitaxy of various materials on 2D materials-coated substrates and interplay between remote epitaxy and vdWE.
Fig. 4: Electrically coupled 3D/2D devices.
Fig. 5: Optically coupled 3D/2D devices.
Fig. 6: Heat coupling in 3D/2D structures.
Fig. 7: Lattice decoupling and vdW coupling in 3D/2D structures.

References

  1. 1.

    Ruzmetov, D. et al. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 10, 3580–3588 (2016).

    CAS  Google Scholar 

  2. 2.

    Zhang, Q., Fiori, G. & Iannaccone, G. On transport in vertical graphene heterostructures. IEEE Electron Device Lett. 35, 966–968 (2014).

    CAS  Google Scholar 

  3. 3.

    Huang, B., Xiang, H., Yu, J. & Wei, S. Effective control of the charge and magnetic atates of transition-metal atoms on single-layer boron nitride. Phys. Rev. Lett. 108, 206802 (2012).

    Google Scholar 

  4. 4.

    Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    CAS  Google Scholar 

  5. 5.

    Al Balushi, Z. Y. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166–1171 (2016).

    CAS  Google Scholar 

  6. 6.

    Journot, T., Bouchiat, V., Gayral, B., Dijon, J. & Hyot, B. Self-assembled UV photodetector made by direct epitaxial GaN growth on graphene. ACS Appl. Mater. Interfaces 10, 18857–18862 (2018).

    CAS  Google Scholar 

  7. 7.

    Koma, A., Sunouchi, K. & Miyajima, T. Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. Vac. Sci. Technol. B 3, 724 (1985).

    Google Scholar 

  8. 8.

    Koma, A., Sunouchi, K. & Miyajima, T. Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron. Eng. 2, 129–136 (1984).

    CAS  Google Scholar 

  9. 9.

    van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Google Scholar 

  10. 10.

    Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012).

    CAS  Google Scholar 

  11. 11.

    Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014).

    CAS  Google Scholar 

  12. 12.

    Zhang, Y. et al. Thickness considerations of two-dimensional layered semiconductors for transistor applications. Sci. Rep. 6, 29615 (2016).

    CAS  Google Scholar 

  13. 13.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Google Scholar 

  14. 14.

    Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009).

    CAS  Google Scholar 

  15. 15.

    Lee, J. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–290 (2014).

    CAS  Google Scholar 

  16. 16.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  17. 17.

    Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).

    CAS  Google Scholar 

  18. 18.

    Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Google Scholar 

  19. 19.

    Yim, C. et al. Heterojunction hybrid devices from vapor phase grown MoS2. Sci. Rep. 4, 5458 (2014).

    CAS  Google Scholar 

  20. 20.

    Yim, C. et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 10, 9550–9558 (2016).

    CAS  Google Scholar 

  21. 21.

    Lupina, G. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015).

    CAS  Google Scholar 

  22. 22.

    Bae, S.-H. et al. Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proc. Natl Acad. Sci. 114, 4082–4086 (2017).

    CAS  Google Scholar 

  23. 23.

    Kim, J. et al. Layer-resolved graphene transfer via engineered strain layers. Science 342, 833–836 (2013).

    CAS  Google Scholar 

  24. 24.

    Desai, S. B. et al. Gold‐mediated exfoliation of ultralarge optoelectronically‐perfect monolayers. Adv. Mater. 28, 4053–4058 (2016).

    CAS  Google Scholar 

  25. 25.

    Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    CAS  Google Scholar 

  26. 26.

    Chung, K., Lee, C. H. & Yi, G. C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330, 655–657 (2010).

    CAS  Google Scholar 

  27. 27.

    Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012).

    CAS  Google Scholar 

  28. 28.

    Hong, Y. J., Lee, W. H., Wu, Y., Ruoff, R. S. & Fukui, T. van der Waals epitaxy of InAs nanowires vertically aligned on single-layer graphene. Nano Lett. 12, 1431–1436 (2012).

    CAS  Google Scholar 

  29. 29.

    Gupta, P. et al. MOVPE growth of semipolar III-nitride semiconductors on CVD graphene. J. Cryst. Growth 372, 105–108 (2013).

    CAS  Google Scholar 

  30. 30.

    Chae, S. J. et al. Direct growth of etch pit-free GaN crystals on few-layer graphene. RSC Adv. 5, 1343–1349 (2015).

    CAS  Google Scholar 

  31. 31.

    Ayari, T. et al. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered hBN. Appl. Phys. Lett. 108, 171106 (2016).

    Google Scholar 

  32. 32.

    Utama, M. I. B. et al. Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. Nano Lett. 12, 2146–2152 (2012).

    CAS  Google Scholar 

  33. 33.

    Alaskar, Y. et al. Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer. J. Cryst. Growth 425, 268–273 (2015).

    CAS  Google Scholar 

  34. 34.

    Mohseni, P. K. et al. Monolithic III-V nanowire solar cells on graphene via direct van der Waals epitaxy. Adv. Mater. 26, 3755–3760 (2014).

    CAS  Google Scholar 

  35. 35.

    Munshi, A. M. et al. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth. Nano Lett. 12, 4570–4576 (2012).

    CAS  Google Scholar 

  36. 36.

    Yoo, H., Chung, K., In Park, S., Kim, M. & Yi, G.-C. Microstructural defects in GaN thin films grown on chemically vapor-deposited graphene layers. Appl. Phys. Lett. 102, 051908 (2013).

    Google Scholar 

  37. 37.

    Lee, J. Lattice transparency of graphene. Nano Lett. 17, 1711–1718 (2017).

    Google Scholar 

  38. 38.

    Kim, J. et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5, 4836 (2014).

    CAS  Google Scholar 

  39. 39.

    Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    CAS  Google Scholar 

  40. 40.

    Ago, H. et al. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces 7, 5265–5273 (2015).

    CAS  Google Scholar 

  41. 41.

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    CAS  Google Scholar 

  42. 42.

    Ceballos, F., Bellus, M. Z., Chiu, H. Y. & Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der waals heterostructure. ACS Nano 8, 12717–12724 (2014).

    CAS  Google Scholar 

  43. 43.

    Yu, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 Heterostructures. Nano Lett. 15, 486–491 (2015).

    CAS  Google Scholar 

  44. 44.

    Lin, Y.-C. et al. Charge transfer in crystalline germanium/monolayer MoS2 heterostructures prepared by chemical vapor deposition. Nanoscale 8, 18675–18681 (2016).

    CAS  Google Scholar 

  45. 45.

    Bae, S.-H. et al. Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano 7, 3130–3138 (2013).

    CAS  Google Scholar 

  46. 46.

    Kwon, S.-J. et al. Extremely stable graphene electrodes doped with macromolecular acid. Nat. Commun. 9, 2037 (2018).

    Google Scholar 

  47. 47.

    Liu, G. et al. A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature. Nat. Nanotechnol. 11, 845–850 (2016).

    CAS  Google Scholar 

  48. 48.

    Samnakay, R. et al. Zone-folded phonons and the commensurate-incommensurate charge-density-wave transition in 1T-TaSe2 thin films. Nano Lett. 15, 2965–2973 (2015).

    CAS  Google Scholar 

  49. 49.

    Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1144 (2012).

    CAS  Google Scholar 

  50. 50.

    Yan, X., Esqueda, I. S., Ma, J., Tice, J. & Wang, H. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure. Appl. Phys. Lett. 112, 032101 (2018).

    Google Scholar 

  51. 51.

    Journot, T., Bouchiat, V., Gayral, B., Dijon, J. & Hyot, B. Self-assembled UV photodetector made by direct epitaxial GaN growth on graphene. ACS Appl. Mater. Interfaces 10, 18857–18862 (2018).

    CAS  Google Scholar 

  52. 52.

    Liang, S. et al. ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110–113 (2001).

    CAS  Google Scholar 

  53. 53.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Google Scholar 

  54. 54.

    Wang, F. et al. Gate variable optical transitions in graphene. Science 320, 206–209 (2008).

    CAS  Google Scholar 

  55. 55.

    Yao, B. et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558, 410–414 (2018).

    CAS  Google Scholar 

  56. 56.

    Yao, B. et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nat. Photon. 12, 22–28 (2018).

    CAS  Google Scholar 

  57. 57.

    Liu, M., Yin, X. & Zhang, X. Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012).

    Google Scholar 

  58. 58.

    Yao, R. et al. Graphene/III-V hybrid diode optical modulator. In Conf. Lasers Electro-Optics JTu2A.7 (2018).

  59. 59.

    Ajlani, H., Azizi, M. K., Gharsallah, A. & Oueslati, M. Graphene-GaAs-graphene stacked layers for the improvement of the transmission at the wavelength of 1.55 μm. Opt. Mater. 57, 120–124 (2016).

    CAS  Google Scholar 

  60. 60.

    Zeng, L. H. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28, 1705970 (2018).

    Google Scholar 

  61. 61.

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    CAS  Google Scholar 

  62. 62.

    Subrina, S., Kotchetkov, D. & Balandin, A. A. Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. IEEE Electron Device Lett. 30, 1281–1283 (2009).

    CAS  Google Scholar 

  63. 63.

    Yan, R. et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986–993 (2014).

    CAS  Google Scholar 

  64. 64.

    Ahn, C. et al. Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 15, 6809–6814 (2015).

    CAS  Google Scholar 

  65. 65.

    Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).

    CAS  Google Scholar 

  66. 66.

    Yan, Z., Liu, G., Khan, J. M. & Balandin, A. A. Graphene quilts for thermal management of high-power GaN transistors. Nat. Commun. 3, 827 (2012).

    Google Scholar 

  67. 67.

    Han, N. et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 4, 1452 (2013).

    Google Scholar 

  68. 68.

    Bae, S.-H. et al. Graphene-based heat spreader for flexible electronic devices. IEEE Trans. Electron Devices 61, 4171–4175 (2014).

    Google Scholar 

  69. 69.

    Renteria, J., Nika, D. & Balandin, A. Graphene thermal properties: applications in thermal management and energy storage. Appl. Sci. 4, 525–547 (2014).

    Google Scholar 

  70. 70.

    Shahil, K. M. F. & Balandin, A. A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861–867 (2012).

    CAS  Google Scholar 

  71. 71.

    Kargar, F. et al. Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10, 37555–37565 (2018).

    CAS  Google Scholar 

  72. 72.

    De Santi, C. et al. Role of defects in the thermal droop of InGaN-based light emitting diodes. J. Appl. Phys. 119, 094501 (2016).

    Google Scholar 

  73. 73.

    Bitla, Y. et al. Oxide heteroepitaxy for flexible optoelectronics. ACS Appl. Mater. Interfaces 8, 32401–32407 (2016).

    CAS  Google Scholar 

  74. 74.

    Jiang, J. et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 3, e1700121 (2017).

    Google Scholar 

  75. 75.

    Liu, H. J. et al. Flexible heteroepitaxy of CoFe2O4/muscovite bimorph with large magnetostriction. ACS Appl. Mater. Interfaces 9, 7297–7304 (2017).

    CAS  Google Scholar 

  76. 76.

    Amrillah, T. et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via van der Waals epitaxy. ACS Nano 11, 6122–6130 (2017).

    CAS  Google Scholar 

  77. 77.

    Li, C.-I. et al. van der Waal epitaxy of flexible and transparent VO2 film on muscovite. Chem. Mater. 28, 3914–3919 (2016).

    CAS  Google Scholar 

  78. 78.

    Chu, Y.-H. Van der Waals oxide heteroepitaxy. npj Quantum Mater. 2, 67 (2017).

    Google Scholar 

  79. 79.

    Lee, S. A., Hwang, J.-Y., Kim, E. S., Kim, S. W. & Choi, W. S. Highly oriented SrTiO3 thin film on graphene substrate. ACS Appl. Mater. Interfaces 9, 3246–3250 (2017).

    CAS  Google Scholar 

  80. 80.

    Lee, K., Zimmerman, J. D., Xiao, X., Sun, K. & Forrest, S. R. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers. J. Appl. Phys. 111, 033527 (2012).

    Google Scholar 

  81. 81.

    Iida, D. et al. Laser lift-off technique for freestanding GaN substrate using an in droplet formed by thermal decomposition of GaInN and its application to light-emitting diodes. Appl. Phys. Lett. 105, 072101 (2014).

    Google Scholar 

  82. 82.

    Bedell, S. W. et al. Layer transfer by controlled spalling. J. Phys. D. Appl. Phys. 46, 152002 (2013).

    Google Scholar 

  83. 83.

    Hiroki, M. et al. Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using hBN. Appl. Phys. Lett. 105, 193509 (2014).

    Google Scholar 

  84. 84.

    Bernardini, F., Fiorentini, V. & Bosin, A. Theoretical evidence for efficient p-type doping of GaN using beryllium. Appl. Phys. Lett. 70, 2990–2992 (1997).

    CAS  Google Scholar 

  85. 85.

    Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    CAS  Google Scholar 

  86. 86.

    Ezawa, M. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012).

    Google Scholar 

  87. 87.

    Yu, Y. et al. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett. 17, 3613–3618 (2017).

    CAS  Google Scholar 

  88. 88.

    Griggio, F. et al. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films. Phys. Rev. Lett. 108, 157604 (2012).

    CAS  Google Scholar 

  89. 89.

    Park, S., Vosguerichian, M. & Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).

    CAS  Google Scholar 

  90. 90.

    Sun, Y. & Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007).

    CAS  Google Scholar 

  91. 91.

    Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    CAS  Google Scholar 

  92. 92.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  93. 93.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Google Scholar 

  94. 94.

    Chari, T., Ribeiro-Palau, R., Dean, C. R. & Shepard, K. Resistivity of rotated graphite-graphene contacts. Nano Lett. 16, 4477–4482 (2016).

    CAS  Google Scholar 

  95. 95.

    Moon, P., Son, Y. W. & Koshino, M. Optical absorption of twisted bilayer graphene with interlayer potential asymmetry. Phys. Rev. B 90, 155427 (2014).

    Google Scholar 

  96. 96.

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Google Scholar 

  97. 97.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  98. 98.

    Sonde, S. et al. Role of graphene/substrate interface on the local transport properties of the two-dimensional electron gas. Appl. Phys. Lett. 97, 132101 (2010).

    Google Scholar 

  99. 99.

    Gibertini, M. et al. Engineering artificial graphene in a two-dimensional electron gas. Phys. Rev. B 79, 241406 (2009).

    Google Scholar 

  100. 100.

    Hwang, C. et al. Fermi velocity engineering in graphene by substrate modification. Sci. Rep. 2, 590 (2012).

    Google Scholar 

  101. 101.

    Choi, C. et al. Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. npj 2D Mater. Appl. 2, 30 (2018).

    Google Scholar 

  102. 102.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeehwan Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bae, SH., Kum, H., Kong, W. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019). https://doi.org/10.1038/s41563-019-0335-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing