At the recent Artificial Intelligence Applications in Biopharma Summit in Boston, USA, a panel of scientists from industry who work at the interface of machine learning and pharma discussed the diverging opinions on the past, present and future role of AI for ADME/Tox in drug discovery and development.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Application of machine learning models for property prediction to targeted protein degraders
Nature Communications Open Access 09 July 2024
-
Molecular set representation learning
Nature Machine Intelligence Open Access 05 July 2024
-
Artificial intelligence (AI)—it’s the end of the tox as we know it (and I feel fine)*
Archives of Toxicology Open Access 20 January 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Gupta, R. R. et al. Drug Metab. Dispos. 38, 2083–2090 (2010).
Ekins, S., Honeycutt, J. D. & Metz, J. T. Drug Discov. Today 15, 451–460 (2010).
Page, K. M. Mol. Pharm. 13, 609–620 (2016).
Webborn, P. J. H. Future Med. Chem. 6, 1233–1235 (2014).
Zientek, M. et al. Chem. Res. Toxicol. 23, 664–676 (2010).
Zhang, H. et al. Toxicol. In Vitro 23, 134–140 (2009).
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Nature 559, 547–555 (2018).
Wang, S. et al. Mol. Pharm. 13, 2855–2866 (2016).
Ekins, S. & Williams, A. J. Lab Chip 10, 13–22 (2010).
Winiwarter, S. et al. J. Comput. Aided Mol. Des. 29, 795–807 (2015).
Clark, A. M., Williams, A. J. & Ekins, S. J. Cheminform. 7, 9 (2015).
Martin, E. J., Polyakov, V. R., Tian, L. & Perez, R. C. J. Chem. Inf. Model. 57, 2077–2088 (2017).
Ericksen, S. S. et al. J. Chem. Inf. Model. 57, 1579–1590 (2017).
Verras, A. et al. J. Chem. Inf. Model. 57, 445–453 (2017).
Capuzzi, S. J. et al. J. Chem. Inf. Model. 57, 105–108 (2017).
Sushko, I. et al. J. Comput. Aided Mol. Des. 25, 533–554 (2011).
Russo, D. P., Zorn, K. M., Clark, A. M., Zhu, H. & Ekins, S. Mol. Pharm. 15, 4361–4370 (2018).
Sheridan, R. P. J. Chem. Inf. Model. 53, 2837–2850 (2013).
Roy, K., Kar, S. & Ambure, P. Chemom. Intell. Lab. Syst. 145, 22–29 (2015).
Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. J. Chem. Inf. Model. 55, 263–274 (2015).
Liu, K. et al. Preprint at https://arxiv.org/abs/1803.06236 (2018).
Ramsundar, B. et al. J. Chem. Inf. Model. 57, 2068–2076 (2017).
Hop, P., Allgood, B. & Yu, J. Mol. Pharm. 15, 4371–4377 (2018).
Rodríguez-Pérez, R. & Bajorath, J. ACS Omega 3, 12033–12040 (2018).
Korotcov, A., Tkachenko, V., Russo, D. P. & Ekins, S. Mol. Pharm. 14, 4462–4475 (2018).
Lane, T. et al. Mol. Pharm. 15, 4346–4360 (2018).
Xu, Y., Ma, J., Liaw, A., Sheridan, R. P. & Svetnik, V. J. Chem. Inf. Model. 57, 2490–2504 (2017).
Ramsundar, B. et al. Preprint at https://arxiv.org/abs/1502.02072 (2015).
Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. J. Comput. Aided Mol. Des. 30, 595–608 (2016).
Ekins, S. Pharm. Res. 33, 2594–2603 (2016).
Acknowledgements
D. Chipman and E. Cutler are kindly acknowledged for organizing the AI Applications in Biopharma Summit. S.E. acknowledges A. Clark, J. Freundlich and A. Williams for their many discussions on machine learning and ADME/Tox models. S.E. acknowledges funding to Collaborations Pharmaceuticals Inc. from NIGMS R44 GM122196-02A1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bhhatarai, B., Walters, W.P., Hop, C.E.C.A. et al. Opportunities and challenges using artificial intelligence in ADME/Tox. Nat. Mater. 18, 418–422 (2019). https://doi.org/10.1038/s41563-019-0332-5
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-019-0332-5
This article is cited by
-
Application of machine learning models for property prediction to targeted protein degraders
Nature Communications (2024)
-
Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning
Nature Biomedical Engineering (2024)
-
Molecular set representation learning
Nature Machine Intelligence (2024)
-
Artificial intelligence (AI)—it’s the end of the tox as we know it (and I feel fine)*
Archives of Toxicology (2024)
-
A Graph-Based Transformer Neural Network for Multi-Label ADR Prediction
Arabian Journal for Science and Engineering (2024)