Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection

Abstract

Hydrogen–air mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metal–polymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasmonic metal–polymer hybrid nanomaterial architecture and characterization.
Fig. 2: Sensitivity enhancement and LoD of Pd@PTFE and Pd70Au30@PTFE.
Fig. 3: Response times of Pd@PTFE and Pd70Au30@PTFE at room temperature.
Fig. 4: Pd70Au30@PMMA sensor.
Fig. 5: Pd70Au30@PTFE@PMMA tandem sensor.

Similar content being viewed by others

Data avaibility

All experimental data within the article and its Supplementary Information are available from the corresponding authors upon reasonable request.

References

  1. Hydrogen to the rescue. Nat. Mater. 17, 565 (2018).

    Article  Google Scholar 

  2. U.S. Department of Energy, Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office. Multi-Year Research, Development, and Demonstration Plan, 2011–2020. Section 3.7 Hydrogen Safety, Codes and Standards (EERE, 2015).

  3. Wadell, C., Syrenova, S. & Langhammer, C. Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano 8, 11925–11940 (2014).

    Article  CAS  Google Scholar 

  4. Wadell, C. et al. Hysteresis-free nanoplasmonic Pd–Au alloy hydrogen sensors. Nano Lett. 15, 3563–3570 (2015).

    Article  CAS  Google Scholar 

  5. Yip, H. K. et al. Gold nanobipyramid-enhanced hydrogen sensing with plasmon red shifts reaching ≈140 nm at 2 vol% hydrogen concentration. Adv. Opt. Mater. 5, 1700740 (2017).

    Article  Google Scholar 

  6. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011).

    Article  CAS  Google Scholar 

  7. Tittl, A. et al. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett. 11, 4366–4369 (2011).

    Article  CAS  Google Scholar 

  8. Langhammer, C., Zorić, I., Kasemo, B. & Clemens, B. M. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett. 7, 3122–3127 (2007).

    Article  CAS  Google Scholar 

  9. Sterl, F. et al. Magnesium as novel material for active plasmonics in the visible wavelength range. Nano Lett. 15, 7949–7955 (2015).

    Article  CAS  Google Scholar 

  10. Baldi, A., Narayan, T. C., Koh, A. L. & Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 13, 1143–1148 (2014).

    Article  CAS  Google Scholar 

  11. Syrenova, S. et al. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat. Mater. 14, 1236–1244 (2015).

    Article  CAS  Google Scholar 

  12. Favier, F., Walter, E. C., Zach, M. P., Benter, T. & Penner, R. M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001).

    Article  CAS  Google Scholar 

  13. Penner, R. M. A nose for hydrogen gas: fast, sensitive H2 sensors using electrodeposited nanomaterials. Acc. Chem. Res. 50, 1902–1910 (2017).

    Article  CAS  Google Scholar 

  14. Adams, B. D. & Chen, A. The role of palladium in a hydrogen economy. Mater. Today 14, 282–289 (2011).

    Article  CAS  Google Scholar 

  15. Poyli, M. A. et al. Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks. J. Phys. Chem. Lett. 3, 2556–2561 (2012).

    Article  CAS  Google Scholar 

  16. Schwarz, R. B. & Khachaturyan, A. G. Thermodynamics of open two-phase systems with coherent interfaces: application to metal–hydrogen systems. Acta Mater. 54, 313–323 (2006).

    Article  CAS  Google Scholar 

  17. Hübert, T., Boon-Brett, L., Black, G. & Banach, U. Hydrogen sensors—a review. Sens. Actuat. B 157, 329–352 (2011).

    Article  Google Scholar 

  18. Palmisano, V. et al. Selectivity and resistance to poisons of commercial hydrogen sensors. Int. J. Hydrogen Energy 40, 11740–11747 (2015).

    Article  CAS  Google Scholar 

  19. Clerbaux, C. et al. Carbon monoxide pollution from cities and urban areas observed by the Terra/MOPITT mission. Geophys. Res. Lett. 35, L03817 (2008).

    Google Scholar 

  20. Luo, S., Wang, D. & Flanagan, T. B. Thermodynamics of hydrogen in fcc Pd−Au alloys. J. Phys. Chem. B 114, 6117–6125 (2010).

    Article  CAS  Google Scholar 

  21. Nugroho, F. A. A., Iandolo, B., Wagner, J. B. & Langhammer, C. Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano 10, 2871–2879 (2016).

    Article  CAS  Google Scholar 

  22. Nugroho, F. A. A., Darmadi, I., Zhdanov, V. P. & Langhammer, C. Universal scaling and design rules of hydrogen-induced optical properties in Pd and Pd-alloy nanoparticles. ACS Nano 12, 9903–9912 (2018).

    Article  CAS  Google Scholar 

  23. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    Article  CAS  Google Scholar 

  24. Fukai, Y. The Metal–Hydrogen System (Springer, 1993).

  25. Zorić, I., Larsson, E. M., Kasemo, B. & Langhammer, C. Localized surface plasmons shed light on nanoscale metal hydrides. Adv. Mater. 22, 4628–4633 (2010).

    Article  Google Scholar 

  26. Li, G. et al. Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. Nat. Mater. 13, 802–806 (2014).

    Article  CAS  Google Scholar 

  27. Ngene, P. et al. Polymer-induced surface modifications of Pd-based thin films leading to improved kinetics in hydrogen sensing and energy storage applications. Angew. Chem. Int. Ed. 53, 12081–12085 (2014).

    Article  CAS  Google Scholar 

  28. Pivak, Y., Schreuders, H., Slaman, M., Griessen, R. & Dam, B. Thermodynamics, stress release and hysteresis behavior in highly adhesive Pd–H films. Int. J. Hydrogen Energy 36, 4056–4067 (2011).

    Article  CAS  Google Scholar 

  29. Yoo, H.-W., Cho, S.-Y., Jeon, H.-J. & Jung, H.-T. Well-defined and high resolution Pt nanowire arrays for a high performance hydrogen sensor by a surface scattering phenomenon. Anal. Chem. 87, 1480–1484 (2015).

    Article  CAS  Google Scholar 

  30. Yang, F., Kung, S.-C., Cheng, M., Hemminger, J. C. & Penner, R. M. Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244 (2010).

    Article  CAS  Google Scholar 

  31. Koo, W.-T. et al. Accelerating palladium nanowire H2 sensors using engineered nanofiltration. ACS Nano 11, 9276–9285 (2017).

    Article  CAS  Google Scholar 

  32. Delmelle, R., Ngene, P., Dam, B., Bleiner, D. & Borgschulte, A. Promotion of hydrogen desorption from palladium surfaces by fluoropolymer coating. ChemCatChem 8, 1646–1650 (2016).

    Article  CAS  Google Scholar 

  33. Nanba, Y., Tsutsumi, T., Ishimoto, T. & Koyama, M. Theoretical study of the hydrogen absorption mechanism into a palladium nanocube coated with a metal–organic framework. J. Phys. Chem. C 121, 14611–14617 (2017).

    Article  CAS  Google Scholar 

  34. Langhammer, C., Zhdanov, V. P., Zorić, I. & Kasemo, B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys. Rev. Lett. 104, 135502 (2010).

    Article  Google Scholar 

  35. Jeon, K.-J. et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10, 286–290 (2011).

    Article  CAS  Google Scholar 

  36. Hong, J. et al. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl. Mater. Interfaces 7, 3554–3561 (2015).

    Article  CAS  Google Scholar 

  37. Min, K. E. & Paul, D. R. Effect of tacticity on permeation properties of poly(methyl methacrylate). J. Polym. Sci. B 26, 1021–1033 (1988).

    Article  CAS  Google Scholar 

  38. ISO 26142: 2010. Hydrogen Detection Apparatus – Stationary Applications (ISO, 2010).

  39. Yamada, Y., Yamada, T., Tasaka, S. & Inagaki, N. Surface modification of poly(tetrafluoroethylene) by remote hydrogen plasma. Macromolecules 29, 4331–4339 (1996).

    Article  CAS  Google Scholar 

  40. Fredriksson, H. et al. Hole–mask colloidal lithography. Adv. Mater. 19, 4297–4302 (2007).

    Article  CAS  Google Scholar 

  41. Grant, A. W., Hu, Q.-H. & Kasemo, B. Transmission electron microscopy windows for nanofabricated structures. Nanotechnology 15, 1175–1181 (2004).

    Article  CAS  Google Scholar 

  42. Slaman, M., Westerwaal, R., Schreuders, H. & Dam, B. Optical hydrogen sensors based on metal-hydrides. Proc. SPIE 8368, 836805 (2012).

    Article  Google Scholar 

  43. Briggs, D. & Seah, M. P. Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy (Wiley, 1990).

  44. Nugroho, F. A. A. et al. Plasmonic nanospectroscopy for thermal analysis of organic semiconductor thin films. Anal. Chem. 89, 2575–2582 (2017).

    Article  CAS  Google Scholar 

  45. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Phys. 155, 206–222 (1959).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  47. Berland, K. & Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 89, 035412 (2014).

    Article  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  52. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  53. Silkin, V. M., Díez Muĩo, R., Chernov, I. P., Chulkov, E. V. & Echenique, P. M. Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration. J. Phys. Condens. Matter 24, 104021 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Swedish Foundation for Strategic Research Framework project RMA15–0052, the Knut and Alice Wallenberg Foundation project 2016.0210 and the Polish National Science Center project 2017/25/B/ST3/00744. The authors also thank the Knut and Alice Wallenberg Foundation for their support of the infrastructure in the MC2 nanofabrication laboratory at Chalmers. The electronic structure calculations were performed on resources provided by the Swedish National Infrastructure for Computing at NSC and C3SE (projects SNIC2017–1–632, SNIC2017–12–18 and C3SE2018–1–6). The authors thank J. Fritzsche for help with the SEM figure and M. Slaman (VU Amsterdam) for FTIR measurements.

Author information

Authors and Affiliations

Authors

Contributions

F.A.A.N. and C.L. designed the experiments, analysed the data and wrote the manuscript. F.A.A.N. and I.D. fabricated the sensors. F.A.A.N. performed sensing measurements on PTFE sensors. F.A.A.N. and I.D. performed sensing measurements on PMMA and tandem sensors. L.C. and A.H. executed the DFT calculations. A.S.-A. performed the XPS analysis. H.S. deposited the PTFE thin films. L.J.B. and B.D. performed the XRD analysis. A.B.d.S.F. and J.B.W. performed the TKD analysis. S.K. performed the STEM-EDS analysis. T.J.A. performed the FDTD simulations. V.P.Z. contributed the theoretical analysis on the sensor kinetics and PTFE strain. B.D. and C.L. coined the initial idea. C.L. coordinated the project.

Corresponding authors

Correspondence to Ferry A. A. Nugroho or Christoph Langhammer.

Ethics declarations

Competing interests

C.L. is co-founder of a spin-off company that markets nanoplasmonic sensor-based technologies. The rest of the authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–14, Supplementary Tables 1–4, Supplementary Figures 1–49, Supplementary References 1–87

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugroho, F.A.A., Darmadi, I., Cusinato, L. et al. Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 18, 489–495 (2019). https://doi.org/10.1038/s41563-019-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0325-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing