Integrins are membrane receptors that mediate cell adhesion and mechanosensing. The structure–function relationship of integrins remains incompletely understood, despite the extensive studies carried out because of its importance to basic cell biology and translational medicine. Using a fluorescence dual biomembrane force probe, microfluidics and cone-and-plate rheometry, we applied precisely controlled mechanical stimulations to platelets and identified an intermediate state of integrin αIIbβ3 that is characterized by an ectodomain conformation, ligand affinity and bond lifetimes that are all intermediate between the well-known inactive and active states. This intermediate state is induced by ligand engagement of glycoprotein (GP) Ibα via a mechanosignalling pathway and potentiates the outside-in mechanosignalling of αIIbβ3 for further transition to the active state during integrin mechanical affinity maturation. Our work reveals distinct αIIbβ3 state transitions in response to biomechanical and biochemical stimuli, and identifies a role for the αIIbβ3 intermediate state in promoting biomechanical platelet aggregation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Xu, X. R. et al. Platelets are versatile cells: new discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 53, 409–430 (2016).

  2. 2.

    Shen, B. et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 503, 131–135 (2013).

  3. 3.

    Stalker, T. J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121, 1875–1885 (2013).

  4. 4.

    Li, Z., Delaney, M. K., O’Brien, K. A. & Du, X. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol. 30, 2341–2349 (2010).

  5. 5.

    Mazzucato, M., Pradella, P., Cozzi, M. R., De Marco, L. & Ruggeri, Z. M. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibα mechanoreceptor. Blood 100, 2793–2800 (2002).

  6. 6.

    Nesbitt, W. S. et al. Distinct glycoprotein Ib/V/IX and integrin αIIbβ3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277, 2965–2972 (2002).

  7. 7.

    Kroll, M. H., Hellums, J. D., McIntire, L. V., Schafer, A. I. & Moake, J. L. Platelets and shear stress. Blood 88, 1525–1541 (1996).

  8. 8.

    Nesbitt, W. S. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15, 665–673 (2009).

  9. 9.

    Ju, L. et al. Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets. Nat. Commun. 9, 1087 (2018).

  10. 10.

    Jackson, S. P. Arterial thrombosis—insidious, unpredictable and deadly. Nat. Med. 17, 1423–1436 (2011).

  11. 11.

    Goncalves, I., Nesbitt, W. S., Yuan, Y. & Jackson, S. P. Importance of temporal flow gradients and integrin αIIbβ3 mechanotransduction for shear activation of platelets. J. Biol. Chem. 280, 15430–15437 (2005).

  12. 12.

    Chen, Y., Ruggeri, Z. M. & Du, X. 14-3-3 proteins in platelet biology and glycoprotein Ib-IX signaling. Blood 131, 2436–2448 (2018).

  13. 13.

    Ju, L., Chen, Y., Xue, L., Du, X. & Zhu, C. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. eLife 5, e15447 (2016).

  14. 14.

    Deng, W. et al. Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor. Nat. Commun. 7, 12863 (2016).

  15. 15.

    Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

  16. 16.

    Zhang, F. et al. Two-dimensional kinetics regulation of αLβ2-ICAM-1 interaction by conformational changes of the αL-inserted domain. J. Biol. Chem. 280, 42207–42218 (2005).

  17. 17.

    Xiao, T., Takagi, J., Coller, B. S., Wang, J. H. & Springer, T. A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67 (2004).

  18. 18.

    Li, J. & Springer, T. A. Energy landscape differences among integrins establish the framework for understanding activation. J. Cell Biol. 217, 397–412 (2017).

  19. 19.

    Kasirer-Friede, A. et al. Signaling through GP Ib-IX-V activates αIIbβ3 independently of other receptors. Blood 103, 3403–3411 (2004).

  20. 20.

    Ju, L. et al. Dual biomembrane force probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. Sci. Rep. 7, 14185 (2017).

  21. 21.

    Durrant, T. N., van den Bosch, M. T. & Hers, I. Integrin αIIbβ3 outside-in signaling. Blood 130, 1607–1619 (2017).

  22. 22.

    Zhu, J., Zhu, J. & Springer, T. A. Complete integrin headpiece opening in eight steps. J. Cell Biol. 201, 1053–1068 (2013).

  23. 23.

    Zhu, J. et al. Closed headpiece of integrin αIIbβ3 and its complex with an αIIbβ3-specific antagonist that does not induce opening. Blood 116, 5050–5059 (2010).

  24. 24.

    Springer, T. A. & Dustin, M. L. Integrin inside-out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24, 107–115 (2012).

  25. 25.

    Tovar-Lopez, F. J. et al. An investigation on platelet transport during thrombus formation at micro-scale stenosis. PloS One 8, e74123 (2013).

  26. 26.

    Jackson, S. P., Nesbitt, W. S. & Westein, E. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7, 17–20 (2009).

  27. 27.

    Zhang, C. et al. Modulation of integrin activation and signaling by α1/α1′-helix unbending at the junction. J. Cell Sci. 126, 5735–5747 (2013).

  28. 28.

    Cheng, M., Li, J., Negri, A. & Coller, B. S. Swing-out of the β3 hybrid domain is required for αIIbβ3 priming and normal cytoskeletal reorganization, but not adhesion to immobilized fibrinogen. PloS One 8, e81609 (2013).

  29. 29.

    Ye, F., Kim, C. & Ginsberg, M. H. Reconstruction of integrin activation. Blood 119, 26–33 (2012).

  30. 30.

    Bassler, N. et al. A mechanistic model for paradoxical platelet activation by ligand-mimetic αIIbβ3 (GPIIb/IIIa) antagonists. Arterioscler. Thromb. Vasc. Biol. 27, e9–e15 (2007).

  31. 31.

    Butera, D. et al. Autoregulation of von Willebrand factor function by a disulfide bond switch. Sci. Adv. 4, eaaq1477 (2018).

  32. 32.

    Ruggeri, Z. M. & Mendolicchio, G. L. Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007).

  33. 33.

    Du, X. et al. Long range propagation of conformational changes in integrin αIIbβ3. J. Biol. Chem. 268, 23087–23092 (1993).

  34. 34.

    McCarty, O. J., Mousa, S. A., Bray, P. F. & Konstantopoulos, K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96, 1789–1797 (2000).

  35. 35.

    Chen, W., Lou, J., Evans, E. A. & Zhu, C. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol. 199, 497–512 (2012).

  36. 36.

    Chesla, S. E., Selvaraj, P. & Zhu, C. Measuring two-dimensional receptor–ligand binding kinetics by micropipette. Biophys. J. 75, 1553–1572 (1998).

  37. 37.

    Bennett, J. S., Berger, B. W. & Billings, P. C. The structure and function of platelet integrins. J. Thromb. Haemost. 7, 200–205 (2009).

  38. 38.

    McCarty, O. J. et al. Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. J. Thromb. Haemost. 2, 1823–1833 (2004).

  39. 39.

    Savage, B., Almus-Jacobs, F. & Ruggeri, Z. M. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell 94, 657–666 (1998).

  40. 40.

    Kaul, D. K. et al. Monoclonal antibodies to αVβ3 (7E3 and LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-activating factor. Blood 95, 368–374 (2000).

  41. 41.

    Mitchell, W. B. et al. Mapping early conformational changes in αIIb and β3 during biogenesis reveals a potential mechanism for αIIbβ3 adopting its bent conformation. Blood 109, 3725–3732 (2007).

  42. 42.

    Zhu, C. & Williams, T. E. Modeling concurrent binding of multiple molecular species in cell adhesion. Biophys. J. 79, 1850–1857 (2000).

  43. 43.

    Lele, M., Sajid, M., Wajih, N. & Stouffer, G. A. Eptifibatide and 7E3, but not tirofiban, inhibit αvβ3 integrin-mediated binding of smooth muscle cells to thrombospondin and prothrombin. Circulation 104, 582–587 (2001).

  44. 44.

    Savage, B., Shattil, S. J. & Ruggeri, Z. M. Modulation of platelet function through adhesion receptors. A dual role for glycoprotein IIb-IIIa (integrin αIIbβ3) mediated by fibrinogen and glycoprotein Ib-von Willebrand factor. J. Biol. Chem. 267, 11300–11306 (1992).

  45. 45.

    Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

  46. 46.

    Litvinov, R. I. et al. Dissociation of bimolecular αIIbβ3–fibrinogen complex under a constant tensile force. Biophys. J. 100, 165–173 (2011).

  47. 47.

    Litvinov, R. I. et al. Resolving two-dimensional kinetics of the integrin αIIbβ3–fibrinogen interactions using binding–unbinding correlation spectroscopy. J. Biol. Chem. 287, 35275–35285 (2012).

  48. 48.

    Bennett, J. S., Chan, C., Vilaire, G., Mousa, S. A. & DeGrado, W. F. Agonist-activated αvβ3 on platelets and lymphocytes binds to the matrix protein osteopontin. J. Biol. Chem. 272, 8137–8140 (1997).

  49. 49.

    Du, X. P. et al. Ligands ‘activate’ integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991).

  50. 50.

    Xu, X. P. et al. Three-dimensional structures of full-length, membrane-embedded human αIIbβ3 integrin complexes. Biophys. J. 110, 798–809 (2016).

  51. 51.

    Wang, N. Cellular adhesion: instant integrin mechanosensing. Nat. Mater. 16, 1173–1174 (2017).

  52. 52.

    Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

  53. 53.

    Irianto, J., Pfeifer, C. R., Xia, Y. & Discher, D. E. SnapShot: mechanosensing matrix. Cell 165, 1820–1820 e1821 (2016).

  54. 54.

    Chen, Y., Ju, L., Rushdi, M., Ge, C. & Zhu, C. Receptor-mediated cell mechanosensing. Mol. Biol. Cell 28, 3134–3155 (2017).

  55. 55.

    Schurpf, T. & Springer, T. A. Regulation of integrin affinity on cell surfaces. EMBO J. 30, 4712–4727 (2011).

  56. 56.

    Ruggeri, Z. M., Orje, J. N., Habermann, R., Federici, A. B. & Reininger, A. J. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108, 1903–1910 (2006).

  57. 57.

    Jakobsen, E., Ly, B. & Kierulf, P. Incorporation of fibrinogen into soluble fibrin complexes. Thromb. Res. 4, 499–507 (1974).

  58. 58.

    Thinn, A. M. M. et al. Autonomous conformational regulation of β3 integrin and the conformation-dependent property of HPA-1a alloantibodies. Proc. Natl Acad. Sci. USA 115, E9105–E9114 (2018).

  59. 59.

    Nesbitt, W. S., Tovar-Lopez, F. J., Westein, E., Harper, I. S. & Jackson, S. P. A multimode-TIRFM and microfluidic technique to examine platelet adhesion dynamics. Methods Mol. Biol. 1046, 39–58 (2013).

  60. 60.

    Chen, Y. et al. Fluorescence biomembrane forceprobe: concurrent quantitation of receptor-ligand kinetics and binding-induced intracellular signaling on a single cell. J. Vis. Exp. 2015, e52975 (2015).

  61. 61.

    Ju, L., Dong, J.-F., Cruz, M. A. & Zhu, C. The N-terminal flanking region of the A1 domain regulates the force-dependent binding of von Willebrand factor to platelet glycoprotein Ibα. J. Biol. Chem. 288, 32289–32301 (2013).

  62. 62.

    Ju, L. & Zhu, C. Benchmarks of biomembrane force probe spring constant models. Biophys. J. 113, 2842–2845 (2017).

  63. 63.

    Chen, W., Lou, J. & Zhu, C. Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285, 35967–35978 (2010).

  64. 64.

    Chen, Y., LeeH., Tong, H., Schwartz, M. & Zhu, C. Force regulated conformational change of integrin αVβ3. Matrix Biol. 60-61, 70–85 (2017).

  65. 65.

    Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

  66. 66.

    Williams, T. E., Nagarajan, S., Selvaraj, P. & Zhu, C. Concurrent and independent binding of Fcgamma receptors IIa and IIIb to surface-bound IgG. Biophys. J. 79, 1867–1875 (2000).

  67. 67.

    Zhou, F., Chen, Y., Felner, E, I., Zhu, C. & Lu, H. Microfluidic auto-alignment of protein patterns for dissecting multi-receptor crosstalk in platelet. Lab on a Chip 18, 2966–2974 (2018).

  68. 68.

    Kendall, M. G. A new measure of rank correlation. Biometrika 30, 81–93 (1938).

  69. 69.

    Chow, G. C. Tests of equality between sets of coefficients in two linear regressions. Econometrica 28, 591–605 (1960).

Download references


The authors thank A. Garcia (Georgia Tech), Z. Ruggeri (The Scripps Research Institute), B. Coller (Rockefeller University), P. Newman, R. Aster, J. Zhu and D. Bougie (BloodCenter of Wisconsin), W. Lam (Emory University) and F. Tovar Lopez (RMIT University) for providing precious reagents. The authors thank Y. Sakurai, D. Myer, Y. Qiu, R. Tran and J. Ciciliano from W. Lam lab (Georgia Tech) for the blood collection; R. Darbousset for support with platelet isolation and flow cytometry; A. Samson (WEHI) and J. MaClean (HRI) for cone-and-plate rheometry training; I. Alwis (USYD) for support with confocal microscopy; N. Court and E. Ilagan (USYD ANFF Research & Prototype Foundry) for advice on stenosis microchannel fabrication and characterization; S. Schoenwaelder (USYD), J. McFadyen (Baker Institute) and Z. Li (QUT) for helpful discussion. This work was supported by grants from the NIH (HL1320194, to C.Z.; R21EB020424, to H.L.), the NSF (DMS-1505256 and DMS-1811552, to L.X.), the NIDA (P50 DA039838, to L.X.), the NHMRC (APP1028564 and APP1048574, to S.P.J.), the Australian Research Council (LE120100043, to S.P.J.), the University of Technology Sydney’s Grant for IBMD (to Q.P.S.), the Diabetes Australia Research Program General Grant (G179720), the University of Sydney Early-Career Researcher Kickstart Grant and Cardiovascular Initiative Catalyst Grant for Precision CV Medicine, the Royal College of Pathologists of Australasia Kanematsu research award and the Cardiac Society of Australia and New Zealand BAYER Young Investigator Research Grant (to L.A.J.). S.P.J. is an NHMRC Senior Principal Research Fellow. L.A.J. is an Australian Research Council DECRA fellow (DE190100609) and a former National Heart Foundation of Australia postdoctoral fellow (101798).

Author information

Author notes

  1. These authors contributed equally: Yunfeng Chen, Lining Arnold Ju.


  1. Woodruff School of Mechanical Engineering and Georgia Institute of Technology, Atlanta, GA, USA

    • Yunfeng Chen
    • , Fangyuan Zhou
    •  & Cheng Zhu
  2. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA

    • Yunfeng Chen
    • , Lining Arnold Ju
    • , Fangyuan Zhou
    • , Jiexi Liao
    •  & Cheng Zhu
  3. Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, USA

    • Yunfeng Chen
    •  & Shaun P. Jackson
  4. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

    • Lining Arnold Ju
    • , Jiexi Liao
    •  & Cheng Zhu
  5. Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia

    • Lining Arnold Ju
    • , Yuping Yuan
    • , Shaun P. Jackson
    •  & Cheng Zhu
  6. Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia

    • Lining Arnold Ju
    • , Yuping Yuan
    •  & Shaun P. Jackson
  7. School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Camperdown, New South Wales, Australia

    • Lining Arnold Ju
  8. Department of Statistics, Pennsylvania State University, University Park, PA, USA

    • Lingzhou Xue
  9. Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia

    • Qian Peter Su
    •  & Dayong Jin
  10. School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA

    • Hang Lu


  1. Search for Yunfeng Chen in:

  2. Search for Lining Arnold Ju in:

  3. Search for Fangyuan Zhou in:

  4. Search for Jiexi Liao in:

  5. Search for Lingzhou Xue in:

  6. Search for Qian Peter Su in:

  7. Search for Dayong Jin in:

  8. Search for Yuping Yuan in:

  9. Search for Hang Lu in:

  10. Search for Shaun P. Jackson in:

  11. Search for Cheng Zhu in:


Y.C. and L.A.J. designed and performed experiments, analysed data and co-wrote the paper. F.Z., J.L. and Q.P.S. performed experiments and analysed data. L.X. analysed data and co-wrote the paper. Y.Y. provided critical suggestions and co-wrote the paper. D.J. co-supervised studies and H.L. provided critical devices and reagents. S.P.J. co-wrote the paper and co-supervised studies. C.Z. supervised the study, designed experiments and wrote the paper. Research activities related to this work complied with relevant ethical regulations.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Shaun P. Jackson or Cheng Zhu.

Supplementary information

  1. Supplementary Information

    Supplementary Notes 1–3, Supplementary Figures 1–11, Supplementary Tables 1–3, Supplementary Video Legends 1–6, Supplementary References 56–69

  2. Reporting Summary

  3. Supplementary Video 1

    A fraction of integrin αIIbβ3 undergoes extension on biomechanical platelet aggregates at stenosis.

  4. Supplementary Video 2

    Integrin αIIbβ3 hybrid domain remains swing-in on biomechanical platelet aggregates at stenosis.

  5. Supplementary Video 3

    Ligand binding site of integrin αIIbβ3 is not fully activated on biomechanical platelet aggregates at stenosis.

  6. Supplementary Video 4

    A fraction of integrin αIIbβ3 undergoes ectodomain extension on agonist-induced platelet aggregates at stenosis.

  7. Supplementary Video 5

    A fraction of integrin αIIbβ3 swings out hybrid domain on agonist-induced platelet aggregates at stenosis.

  8. Supplementary Video 6

    Ligand binding site of a fraction of integrin αIIbβ3 becomes activated on agonist induced platelet aggregates at stenosis.

About this article

Publication history