An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation


Integrins are membrane receptors that mediate cell adhesion and mechanosensing. The structure–function relationship of integrins remains incompletely understood, despite the extensive studies carried out because of its importance to basic cell biology and translational medicine. Using a fluorescence dual biomembrane force probe, microfluidics and cone-and-plate rheometry, we applied precisely controlled mechanical stimulations to platelets and identified an intermediate state of integrin αIIbβ3 that is characterized by an ectodomain conformation, ligand affinity and bond lifetimes that are all intermediate between the well-known inactive and active states. This intermediate state is induced by ligand engagement of glycoprotein (GP) Ibα via a mechanosignalling pathway and potentiates the outside-in mechanosignalling of αIIbβ3 for further transition to the active state during integrin mechanical affinity maturation. Our work reveals distinct αIIbβ3 state transitions in response to biomechanical and biochemical stimuli, and identifies a role for the αIIbβ3 intermediate state in promoting biomechanical platelet aggregation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mapping αIIbβ3 conformations on platelet aggregates.
Fig. 2: αIIbβ3 conformational changes following GPIbα mechanosignalling and agonist stimulation.
Fig. 3: Distinct β3 integrin activations by GPIbα mechanosignalling and soluble agonist stimulation.
Fig. 4: Relation between the activation state of αIIbβ3 and its force-regulated ligand dissociation.
Fig. 5: Dose-dependent mechanical and chemical activation of αIIbβ3.
Fig. 6: Mechanical affinity maturation of intermediate state αIIbβ3.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Xu, X. R. et al. Platelets are versatile cells: new discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 53, 409–430 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Shen, B. et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 503, 131–135 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Stalker, T. J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121, 1875–1885 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Li, Z., Delaney, M. K., O’Brien, K. A. & Du, X. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol. 30, 2341–2349 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Mazzucato, M., Pradella, P., Cozzi, M. R., De Marco, L. & Ruggeri, Z. M. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibα mechanoreceptor. Blood 100, 2793–2800 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    Nesbitt, W. S. et al. Distinct glycoprotein Ib/V/IX and integrin αIIbβ3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277, 2965–2972 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Kroll, M. H., Hellums, J. D., McIntire, L. V., Schafer, A. I. & Moake, J. L. Platelets and shear stress. Blood 88, 1525–1541 (1996).

    CAS  Google Scholar 

  8. 8.

    Nesbitt, W. S. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15, 665–673 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Ju, L. et al. Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets. Nat. Commun. 9, 1087 (2018).

    Article  Google Scholar 

  10. 10.

    Jackson, S. P. Arterial thrombosis—insidious, unpredictable and deadly. Nat. Med. 17, 1423–1436 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Goncalves, I., Nesbitt, W. S., Yuan, Y. & Jackson, S. P. Importance of temporal flow gradients and integrin αIIbβ3 mechanotransduction for shear activation of platelets. J. Biol. Chem. 280, 15430–15437 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    Chen, Y., Ruggeri, Z. M. & Du, X. 14-3-3 proteins in platelet biology and glycoprotein Ib-IX signaling. Blood 131, 2436–2448 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Ju, L., Chen, Y., Xue, L., Du, X. & Zhu, C. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. eLife 5, e15447 (2016).

    Article  Google Scholar 

  14. 14.

    Deng, W. et al. Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor. Nat. Commun. 7, 12863 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Zhang, F. et al. Two-dimensional kinetics regulation of αLβ2-ICAM-1 interaction by conformational changes of the αL-inserted domain. J. Biol. Chem. 280, 42207–42218 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    Xiao, T., Takagi, J., Coller, B. S., Wang, J. H. & Springer, T. A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    Li, J. & Springer, T. A. Energy landscape differences among integrins establish the framework for understanding activation. J. Cell Biol. 217, 397–412 (2017).

    Article  Google Scholar 

  19. 19.

    Kasirer-Friede, A. et al. Signaling through GP Ib-IX-V activates αIIbβ3 independently of other receptors. Blood 103, 3403–3411 (2004).

    CAS  Article  Google Scholar 

  20. 20.

    Ju, L. et al. Dual biomembrane force probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. Sci. Rep. 7, 14185 (2017).

    Article  Google Scholar 

  21. 21.

    Durrant, T. N., van den Bosch, M. T. & Hers, I. Integrin αIIbβ3 outside-in signaling. Blood 130, 1607–1619 (2017).

    CAS  Google Scholar 

  22. 22.

    Zhu, J., Zhu, J. & Springer, T. A. Complete integrin headpiece opening in eight steps. J. Cell Biol. 201, 1053–1068 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Zhu, J. et al. Closed headpiece of integrin αIIbβ3 and its complex with an αIIbβ3-specific antagonist that does not induce opening. Blood 116, 5050–5059 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Springer, T. A. & Dustin, M. L. Integrin inside-out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24, 107–115 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Tovar-Lopez, F. J. et al. An investigation on platelet transport during thrombus formation at micro-scale stenosis. PloS One 8, e74123 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Jackson, S. P., Nesbitt, W. S. & Westein, E. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7, 17–20 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Zhang, C. et al. Modulation of integrin activation and signaling by α1/α1′-helix unbending at the junction. J. Cell Sci. 126, 5735–5747 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Cheng, M., Li, J., Negri, A. & Coller, B. S. Swing-out of the β3 hybrid domain is required for αIIbβ3 priming and normal cytoskeletal reorganization, but not adhesion to immobilized fibrinogen. PloS One 8, e81609 (2013).

    Article  Google Scholar 

  29. 29.

    Ye, F., Kim, C. & Ginsberg, M. H. Reconstruction of integrin activation. Blood 119, 26–33 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Bassler, N. et al. A mechanistic model for paradoxical platelet activation by ligand-mimetic αIIbβ3 (GPIIb/IIIa) antagonists. Arterioscler. Thromb. Vasc. Biol. 27, e9–e15 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Butera, D. et al. Autoregulation of von Willebrand factor function by a disulfide bond switch. Sci. Adv. 4, eaaq1477 (2018).

    Article  Google Scholar 

  32. 32.

    Ruggeri, Z. M. & Mendolicchio, G. L. Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Du, X. et al. Long range propagation of conformational changes in integrin αIIbβ3. J. Biol. Chem. 268, 23087–23092 (1993).

    CAS  Google Scholar 

  34. 34.

    McCarty, O. J., Mousa, S. A., Bray, P. F. & Konstantopoulos, K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96, 1789–1797 (2000).

    CAS  Google Scholar 

  35. 35.

    Chen, W., Lou, J., Evans, E. A. & Zhu, C. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol. 199, 497–512 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Chesla, S. E., Selvaraj, P. & Zhu, C. Measuring two-dimensional receptor–ligand binding kinetics by micropipette. Biophys. J. 75, 1553–1572 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    Bennett, J. S., Berger, B. W. & Billings, P. C. The structure and function of platelet integrins. J. Thromb. Haemost. 7, 200–205 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    McCarty, O. J. et al. Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. J. Thromb. Haemost. 2, 1823–1833 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    Savage, B., Almus-Jacobs, F. & Ruggeri, Z. M. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell 94, 657–666 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    Kaul, D. K. et al. Monoclonal antibodies to αVβ3 (7E3 and LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-activating factor. Blood 95, 368–374 (2000).

    CAS  Google Scholar 

  41. 41.

    Mitchell, W. B. et al. Mapping early conformational changes in αIIb and β3 during biogenesis reveals a potential mechanism for αIIbβ3 adopting its bent conformation. Blood 109, 3725–3732 (2007).

    CAS  Article  Google Scholar 

  42. 42.

    Zhu, C. & Williams, T. E. Modeling concurrent binding of multiple molecular species in cell adhesion. Biophys. J. 79, 1850–1857 (2000).

    CAS  Article  Google Scholar 

  43. 43.

    Lele, M., Sajid, M., Wajih, N. & Stouffer, G. A. Eptifibatide and 7E3, but not tirofiban, inhibit αvβ3 integrin-mediated binding of smooth muscle cells to thrombospondin and prothrombin. Circulation 104, 582–587 (2001).

    CAS  Article  Google Scholar 

  44. 44.

    Savage, B., Shattil, S. J. & Ruggeri, Z. M. Modulation of platelet function through adhesion receptors. A dual role for glycoprotein IIb-IIIa (integrin αIIbβ3) mediated by fibrinogen and glycoprotein Ib-von Willebrand factor. J. Biol. Chem. 267, 11300–11306 (1992).

    CAS  Google Scholar 

  45. 45.

    Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    Litvinov, R. I. et al. Dissociation of bimolecular αIIbβ3–fibrinogen complex under a constant tensile force. Biophys. J. 100, 165–173 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Litvinov, R. I. et al. Resolving two-dimensional kinetics of the integrin αIIbβ3–fibrinogen interactions using binding–unbinding correlation spectroscopy. J. Biol. Chem. 287, 35275–35285 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Bennett, J. S., Chan, C., Vilaire, G., Mousa, S. A. & DeGrado, W. F. Agonist-activated αvβ3 on platelets and lymphocytes binds to the matrix protein osteopontin. J. Biol. Chem. 272, 8137–8140 (1997).

    CAS  Article  Google Scholar 

  49. 49.

    Du, X. P. et al. Ligands ‘activate’ integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991).

    CAS  Article  Google Scholar 

  50. 50.

    Xu, X. P. et al. Three-dimensional structures of full-length, membrane-embedded human αIIbβ3 integrin complexes. Biophys. J. 110, 798–809 (2016).

    CAS  Article  Google Scholar 

  51. 51.

    Wang, N. Cellular adhesion: instant integrin mechanosensing. Nat. Mater. 16, 1173–1174 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    CAS  Article  Google Scholar 

  53. 53.

    Irianto, J., Pfeifer, C. R., Xia, Y. & Discher, D. E. SnapShot: mechanosensing matrix. Cell 165, 1820–1820 e1821 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Chen, Y., Ju, L., Rushdi, M., Ge, C. & Zhu, C. Receptor-mediated cell mechanosensing. Mol. Biol. Cell 28, 3134–3155 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    Schurpf, T. & Springer, T. A. Regulation of integrin affinity on cell surfaces. EMBO J. 30, 4712–4727 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    Ruggeri, Z. M., Orje, J. N., Habermann, R., Federici, A. B. & Reininger, A. J. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108, 1903–1910 (2006).

    CAS  Article  Google Scholar 

  57. 57.

    Jakobsen, E., Ly, B. & Kierulf, P. Incorporation of fibrinogen into soluble fibrin complexes. Thromb. Res. 4, 499–507 (1974).

    CAS  Article  Google Scholar 

  58. 58.

    Thinn, A. M. M. et al. Autonomous conformational regulation of β3 integrin and the conformation-dependent property of HPA-1a alloantibodies. Proc. Natl Acad. Sci. USA 115, E9105–E9114 (2018).

    CAS  Article  Google Scholar 

  59. 59.

    Nesbitt, W. S., Tovar-Lopez, F. J., Westein, E., Harper, I. S. & Jackson, S. P. A multimode-TIRFM and microfluidic technique to examine platelet adhesion dynamics. Methods Mol. Biol. 1046, 39–58 (2013).

    Article  Google Scholar 

  60. 60.

    Chen, Y. et al. Fluorescence biomembrane forceprobe: concurrent quantitation of receptor-ligand kinetics and binding-induced intracellular signaling on a single cell. J. Vis. Exp. 2015, e52975 (2015).

    Google Scholar 

  61. 61.

    Ju, L., Dong, J.-F., Cruz, M. A. & Zhu, C. The N-terminal flanking region of the A1 domain regulates the force-dependent binding of von Willebrand factor to platelet glycoprotein Ibα. J. Biol. Chem. 288, 32289–32301 (2013).

    CAS  Article  Google Scholar 

  62. 62.

    Ju, L. & Zhu, C. Benchmarks of biomembrane force probe spring constant models. Biophys. J. 113, 2842–2845 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Chen, W., Lou, J. & Zhu, C. Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285, 35967–35978 (2010).

    CAS  Article  Google Scholar 

  64. 64.

    Chen, Y., LeeH., Tong, H., Schwartz, M. & Zhu, C. Force regulated conformational change of integrin αVβ3. Matrix Biol. 60-61, 70–85 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Williams, T. E., Nagarajan, S., Selvaraj, P. & Zhu, C. Concurrent and independent binding of Fcgamma receptors IIa and IIIb to surface-bound IgG. Biophys. J. 79, 1867–1875 (2000).

    CAS  Article  Google Scholar 

  67. 67.

    Zhou, F., Chen, Y., Felner, E, I., Zhu, C. & Lu, H. Microfluidic auto-alignment of protein patterns for dissecting multi-receptor crosstalk in platelet. Lab on a Chip 18, 2966–2974 (2018).

    CAS  Article  Google Scholar 

  68. 68.

    Kendall, M. G. A new measure of rank correlation. Biometrika 30, 81–93 (1938).

    Article  Google Scholar 

  69. 69.

    Chow, G. C. Tests of equality between sets of coefficients in two linear regressions. Econometrica 28, 591–605 (1960).

    Article  Google Scholar 

Download references


The authors thank A. Garcia (Georgia Tech), Z. Ruggeri (The Scripps Research Institute), B. Coller (Rockefeller University), P. Newman, R. Aster, J. Zhu and D. Bougie (BloodCenter of Wisconsin), W. Lam (Emory University) and F. Tovar Lopez (RMIT University) for providing precious reagents. The authors thank Y. Sakurai, D. Myer, Y. Qiu, R. Tran and J. Ciciliano from W. Lam lab (Georgia Tech) for the blood collection; R. Darbousset for support with platelet isolation and flow cytometry; A. Samson (WEHI) and J. MaClean (HRI) for cone-and-plate rheometry training; I. Alwis (USYD) for support with confocal microscopy; N. Court and E. Ilagan (USYD ANFF Research & Prototype Foundry) for advice on stenosis microchannel fabrication and characterization; S. Schoenwaelder (USYD), J. McFadyen (Baker Institute) and Z. Li (QUT) for helpful discussion. This work was supported by grants from the NIH (HL1320194, to C.Z.; R21EB020424, to H.L.), the NSF (DMS-1505256 and DMS-1811552, to L.X.), the NIDA (P50 DA039838, to L.X.), the NHMRC (APP1028564 and APP1048574, to S.P.J.), the Australian Research Council (LE120100043, to S.P.J.), the University of Technology Sydney’s Grant for IBMD (to Q.P.S.), the Diabetes Australia Research Program General Grant (G179720), the University of Sydney Early-Career Researcher Kickstart Grant and Cardiovascular Initiative Catalyst Grant for Precision CV Medicine, the Royal College of Pathologists of Australasia Kanematsu research award and the Cardiac Society of Australia and New Zealand BAYER Young Investigator Research Grant (to L.A.J.). S.P.J. is an NHMRC Senior Principal Research Fellow. L.A.J. is an Australian Research Council DECRA fellow (DE190100609) and a former National Heart Foundation of Australia postdoctoral fellow (101798).

Author information




Y.C. and L.A.J. designed and performed experiments, analysed data and co-wrote the paper. F.Z., J.L. and Q.P.S. performed experiments and analysed data. L.X. analysed data and co-wrote the paper. Y.Y. provided critical suggestions and co-wrote the paper. D.J. co-supervised studies and H.L. provided critical devices and reagents. S.P.J. co-wrote the paper and co-supervised studies. C.Z. supervised the study, designed experiments and wrote the paper. Research activities related to this work complied with relevant ethical regulations.

Corresponding authors

Correspondence to Shaun P. Jackson or Cheng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Supplementary Figures 1–11, Supplementary Tables 1–3, Supplementary Video Legends 1–6, Supplementary References 56–69

Reporting Summary

Supplementary Video 1

A fraction of integrin αIIbβ3 undergoes extension on biomechanical platelet aggregates at stenosis.

Supplementary Video 2

Integrin αIIbβ3 hybrid domain remains swing-in on biomechanical platelet aggregates at stenosis.

Supplementary Video 3

Ligand binding site of integrin αIIbβ3 is not fully activated on biomechanical platelet aggregates at stenosis.

Supplementary Video 4

A fraction of integrin αIIbβ3 undergoes ectodomain extension on agonist-induced platelet aggregates at stenosis.

Supplementary Video 5

A fraction of integrin αIIbβ3 swings out hybrid domain on agonist-induced platelet aggregates at stenosis.

Supplementary Video 6

Ligand binding site of a fraction of integrin αIIbβ3 becomes activated on agonist induced platelet aggregates at stenosis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ju, L.A., Zhou, F. et al. An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation. Nat. Mater. 18, 760–769 (2019).

Download citation

Further reading