Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unified picture of anionic redox in Li/Na-ion batteries

An Author Correction to this article was published on 11 November 2019

This article has been updated

Abstract

Anionic redox in Li-rich and Na-rich transition metal oxides (A-rich-TMOs) has emerged as a new paradigm to increase the energy density of rechargeable batteries. Ever since, numerous electrodes delivering extra anionic capacity beyond the theoretical cationic capacity have been reported. Unfortunately, most often the anionic capacity achieved in charge is partly irreversible in discharge. A unified picture of anionic redox in A-rich-TMOs is designed here to identify the electronic origin of this irreversibility and to propose new directions to improve the cycling performance of the electrodes. The electron localization function is introduced as a holistic tool to unambiguously locate the oxygen lone pairs in the structure and follow their participation in the redox activity of A-rich-TMOs. The charge-transfer gap of transition metal oxides is proposed as the pertinent observable to quantify the amount of extra capacity achievable in charge and its reversibility in discharge, irrespective of the material chemical composition. From this generalized approach, we conclude that the reversibility of the anionic capacity is limited to a critical number of O holes per oxygen, hO ≤ 1/3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxygen lone-pair count.
Fig. 2: ELF.
Fig. 3: Dynamics of A removal from Mott–Hubbard systems.
Fig. 4: Dynamics of the oxidation process in charge-transfer A-rich-TMOs.
Fig. 5: Unified picture of anionic redox in A-rich-TMOs.
Fig. 6: Schematic galvanostatic curves of A-rich-TMOs.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

  • 11 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. Effect of structure on the Fe3+–Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997).

    CAS  Google Scholar 

  2. Saubanère, M., Ben Yahia, M., Lebègue, S. & Doublet, M.-L. An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries. Nat. Commun. 5, 5559 (2014).

    Google Scholar 

  3. Koga, H. et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 160, A786–A792 (2013).

    CAS  Google Scholar 

  4. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    CAS  Google Scholar 

  5. Sathiya, M. et al. High performance Li2Ru1−yMnyO3 cathode materials for rechargeable lithium-ion batteries: their understanding. Chem. Mater. 25, 1121–1131 (2013).

    CAS  Google Scholar 

  6. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    CAS  Google Scholar 

  7. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    CAS  Google Scholar 

  8. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    CAS  Google Scholar 

  9. Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–587 (2017).

    CAS  Google Scholar 

  10. Robertson, A. D. & Bruce, P. G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 15, 1984–1987 (2003).

    CAS  Google Scholar 

  11. Ito, D., Liu, Y., Chong, S. & Wu, Y.-F. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07 Mn0.56O2. J. Power Sources 195, 567–573 (2010).

    CAS  Google Scholar 

  12. Croy, J. R. et al. First-charge instabilities of layered–layered lithium-ion-battery materials. Phys. Chem. Chem. Phys. 17, 24382 (2015).

    CAS  Google Scholar 

  13. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091-1–12 (2017).

    Google Scholar 

  14. Lee, E. & Persson, K. A. Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations. Adv. Energy Mater. 4, 1400498 (2014).

    Google Scholar 

  15. Qian, D., Xu, B., Chic, M. & Meng, Y. S. Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 16, 14665–14668 (2014).

    CAS  Google Scholar 

  16. Xie, Y., Saubanère, M. & Doublet, M.-L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Env. Sci. 10, 266–274 (2017).

    CAS  Google Scholar 

  17. Urban, A., Matts, I., Abdellahi, A. & Ceder, G. Computation design and preparation of cation-disordered oxides for high-energy-density Li-ion batteries. Adv. Energy Mater. 6, 1600488-1–1600488-8 (2016).

    Google Scholar 

  18. Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054-1–28 (2017).

    Google Scholar 

  19. Li, W., Song, B. & Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017).

    CAS  Google Scholar 

  20. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 376–286 (2018).

    Google Scholar 

  21. Yabuuchi, N. et al. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2, 16851–16855 (2014).

    CAS  Google Scholar 

  22. Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    CAS  Google Scholar 

  23. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    CAS  Google Scholar 

  24. Saubanère, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Env. Sci. 9, 984–991 (2016).

    Google Scholar 

  25. Perez., A. J. et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat. Energy 2, 954–962 (2017).

    CAS  Google Scholar 

  26. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    CAS  Google Scholar 

  27. House, R. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    CAS  Google Scholar 

  28. Mortemard de Boisse, B. et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7−x[X 1/7Mn6/7]O2 (X:Mn vacancy). Adv. Energy Mater. 8, 1800409 (2018).

    Google Scholar 

  29. Hong, J. et al. Review—Lithium-excess layered cathodes for lithium rechargeable batteries. J. Electrochem. Soc. 162, A2447–A2467 (2015).

    CAS  Google Scholar 

  30. Rozier, P. & Tarascon, J. M. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, A2490–A2499 (2015).

    CAS  Google Scholar 

  31. Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the U. S. Department of Energy’s ‘Deep Dive’ effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015).

    CAS  Google Scholar 

  32. Zheng, J. et al. Li- and Mn-rich cathode materials: challenges to commercialization. Adv. Energy Mater. 7, 1601284 (2016).

    Google Scholar 

  33. Hy, S. et al. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci. 9, 1931–1954 (2016).

    CAS  Google Scholar 

  34. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    CAS  Google Scholar 

  35. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals 3rd edn (Wiley, 2001).

  36. Toriumi, K. & Saito, Y. Electron-density distribution in crystals of α-K2CrO4. Acta Crystallogr. B 34, 3149–3156 (1978).

    Google Scholar 

  37. Fischer, J., Veillard, A. & Weiss, R. Nature de la liaison dans l’ion tétraperoxochromate CrO8 3− : une étude des structures cristalline et électronique. Theor. Chim. Acta 24, 317–333 (1972).

    CAS  Google Scholar 

  38. Grimaud, A. et al. Chemical activity of the peroxide/oxide redox couple: case study of Ba5Ru2O11 in aqueous and organic solvents. Chem. Mater. 30, 3882–3893 (2018).

    CAS  Google Scholar 

  39. Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Google Scholar 

  40. Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem. Eur. J. 2, 1053–1059 (1996).

    CAS  Google Scholar 

  41. Rouxel, J. Some solid state chemistry with holes: anion–cation redox competition in solids. Curr. Sci. 73, 31–39 (1997).

    CAS  Google Scholar 

  42. Yabuuchi, N. Material design concept of lithium-excess materials with rocksalt-related structures for rechargeable non-aqueous batteries. Chem. Rec. 18, 1–19 (2018).

    Google Scholar 

  43. Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    CAS  Google Scholar 

  44. Kalyani, P., Chitra, S., Mohan, T. & Gopukumar, S. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J. Power Sources 80, 103–106 (1999).

    CAS  Google Scholar 

  45. Armstrong, A. R., Robertson, A. D. & Bruce, P. G. Overcharging manganese oxides: extracting lithium beyond Mn4+. J. Power Sources 146, 275–280 (2005).

    CAS  Google Scholar 

  46. Freire, M., Lebedev, O. I., Maignan, A., Jordi, C. & Pralong, V. Nanostructured Li2MnO3: a disordered rock salt type structure for high energy density Li ion batteries. J. Mater. Chem. A 5, 21898–21902 (2017).

    CAS  Google Scholar 

  47. Sato., K. et al. Na-excess cation-disordered rocksalt oxide: Na1.3Nb0.3Mn0.4O2. Chem. Mater. 29, 5043–5047 (2017).

    CAS  Google Scholar 

  48. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    CAS  Google Scholar 

  49. Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  53. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  54. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8210 (2003).

    CAS  Google Scholar 

  55. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  57. Savin, A. et al. Electron localization in solid-state structures of the elements: the diamond structure. Angew. Chem. Int. Ed. Engl. 31, 187–188 (1992).

    Google Scholar 

  58. Causà, M., D’Amore, M., Gentile, F., Menendez, F. & Calatayud, M. Electron localization function and maximum probability domains analysis of semi-ionic oxides crystals, surfaces and surface defects. Comput. Theor. Chem. 1053, 315–321 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the RS2E institution and the Agence Nationale pour la Recherche (ANR)—DeliRedox no. ANR-14-CE05-0020—for supporting this work. Part of this work was supported by the EU through the POROUS4APP project—H2020-NMP-PILOT-2015 no. 686163.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the DFT calculations and analyses. M.S. and M.-L.D. developed the theoretical framework and wrote the paper.

Corresponding authors

Correspondence to Matthieu Saubanère or Marie-Liesse Doublet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1,2, Supplementary Figures 1,2, Supplementary References 1–11

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Yahia, M., Vergnet, J., Saubanère, M. et al. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019). https://doi.org/10.1038/s41563-019-0318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0318-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing