Pressure promoted low-temperature melting of metal–organic frameworks


Metal–organic frameworks (MOFs) are microporous materials with huge potential for chemical processes. Structural collapse at high pressure, and transitions to liquid states at high temperature, have recently been observed in the zeolitic imidazolate framework (ZIF) family of MOFs. Here, we show that simultaneous high-pressure and high-temperature conditions result in complex behaviour in ZIF-62 and ZIF-4, with distinct high- and low-density amorphous phases occurring over different regions of the pressure–temperature phase diagram. In situ powder X-ray diffraction, Raman spectroscopy and optical microscopy reveal that the stability of the liquid MOF state expands substantially towards lower temperatures at intermediate, industrially achievable pressures and first-principles molecular dynamics show that softening of the framework coordination with pressure makes melting thermodynamically easier. Furthermore, the MOF glass formed by melt quenching the high-temperature liquid possesses permanent, accessible porosity. Our results thus imply a route to the synthesis of functional MOF glasses at low temperatures, avoiding decomposition on heating at ambient pressure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystal structure of ZIF-62 and experimental set-up.
Fig. 2: Experimentally derived PT phase diagram for ZIF-62.
Fig. 3: Structural evolution of ZIF-62 in PT space.
Fig. 4: Potential of mean force for the Zn–N distance (r), and dynamics of Zn–N cleavages.

Data availability

Experimental and computational data supporting the findings of this work are available from the public GitHub online repository at


  1. 1.

    Moghadam, P. Z. et al. Development of a cambridge structural database subset: a collection of metal-organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Denny, M. S. Jr, Moreton, J. C., Benz, L. & Cohen, S. M. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Mondloch, J. E. et al. Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 14, 512–516 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 30, 1704501–1704524 (2018).

    Article  Google Scholar 

  8. 8.

    Schneemann, A. et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F. X. Interplay between defects, disorder and flexibility in metal–organic frameworks. Nat. Chem. 9, 11–16 (2016).

    Article  Google Scholar 

  10. 10.

    Panda, T. et al. Mechanical alloying of metal-organic frameworks. Angew. Chem. Int. Ed. 56, 2413–2417 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Coudert, F.-X. responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Carrington, E. J. et al. Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nat. Chem. 9, 882–889 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Longley, L., Li, N., Wei, F. & Bennett, T. D. Uncovering a reconstructive solid–solid phase transition in a metal–organic framework. R. Soc. Open Sci. 4, 171355 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Lapidus, S. H., Halder, G. J., Chupas, P. J. & Chapman, K. W. Exploiting high pressures to generate porosity, polymorphism, and lattice expansion in the nonporous molecular framework Zn(CN)2. J. Am. Chem. Soc. 135, 7621–7628 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Robert M. Hazen, R. T. D. High-Temperature and High-Pressure Crystal Chemistry (Reviews in Mineralogy and Geochemistry Vol. 41, Mineralogical Society of America, 2003).

  17. 17.

    Dove, M. T. et al. Crystal structure of the high-pressure monoclinic phase-II of cristobalite, SiO2. Mineral. Mag. 64, 569–576 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).

    CAS  Article  Google Scholar 

  19. 19.

    Natarajan, S. & Mahata, P. Metal-organic framework structures - how closely are they related to classical inorganic structures? Chem. Soc. Rev. 38, 2304–2318 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Decurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. & Guetlich, P. A concept for the synthesis of 3-dimensional homo-and bimetallic oxalate-bridged networks [M2(ox)3]n. Structural, Moessbauer, and magnetic studies in the field of molecular-based magnets. J. Am. Chem. Soc. 116, 9521–9528 (1994).

    CAS  Article  Google Scholar 

  21. 21.

    Sadakiyo, M., Yamada, T., Honda, K., Matsui, H. & Kitagawa, H. Control of crystalline proton-conducting pathways by water-induced transformations of hydrogen-bonding networks in a metal–organic framework. J. Am. Chem. Soc. 136, 7701–7707 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Huskić, I., Pekov, I. V., Krivovichev, S. V. & Friščić, T. Minerals with metal-organic framework structures. Sci. Adv. 2, e1600621–e1600629 (2016).

    Article  Google Scholar 

  23. 23.

    Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    McKellar, S. C. & Moggach, S. A. Structural studies of metal-organic frameworks under high pressure. Acta Crystallogr. Sect. B 71, 587–607 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Cruciani, G. Zeolites upon heating: factors governing their thermal stability and structural changes. J. Phys. Chem. Solids 67, 1973–1994 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Hazen, R. M. Zeolite molecular sieve 4A: anomalous compressibility and volume discontinuities at high pressure. Science 219, 1065–1067 (1983).

    CAS  Article  Google Scholar 

  28. 28.

    Chapman, K. W., Sava, D. F., Halder, G. J., Chupas, P. J. & Nenoff, T. M. Trapping guests within a nanoporous metal–organic framework through pressure-induced amorphization. J. Am. Chem. Soc. 133, 18583–18585 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Zhao, P. et al. Pressure-induced oversaturation and phase transition in zeolitic imidazolate frameworks with remarkable mechanical stability. Dalt. Trans. 44, 4498–4503 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Henke, S. et al. Pore closure in zeolitic imidazolate frameworks under mechanical pressure. Chem. Sci. 9, 1654–1660 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Bennett, T. D. et al. Thermal amorphization of zeolitic imidazolate frameworks. Angew. Chemie Int. Ed. 50, 3067–3071 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Bennett, T. D. et al. Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Gaillac, R. et al. Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1155 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Bennett, T. D. et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6, 8079–8086 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Qiao, A. et al. A metal-organic framework with ultrahigh glass-forming ability. Sci. Adv. 4, 6827–6834 (2018).

    Article  Google Scholar 

  36. 36.

    Zhou, C. et al. Metal-organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042–5051 (2018).

    Article  Google Scholar 

  37. 37.

    Wenqian, C. et al. Glass formation of a coordinationpolymer crystal for enhanced proton conductivity and material flexibility. Angew. Chemie Int. Ed. 55, 5195–5200 (2016).

    Article  Google Scholar 

  38. 38.

    Kniep, R., Mootz, D. & Vegas, A. Variscite. Acta Crystallogr. B33, 263–265 (1977).

    CAS  Article  Google Scholar 

  39. 39.

    Song, Y., Zavalij, P. Y., Suzuki, M. & Whittingham, M. S. New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties. Inorg. Chem. 41, 5778–5786 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    Deiseroth, H. J. & Müller -Buschbaum, H. Über Erdalkalimetalloxogallate. III: Untersuchung des Aufbaus von CaGa O . Z. Anorg. Allg. Chem. 396, 157–164 (1973).

    Article  Google Scholar 

  41. 41.

    Lazić, B., Kahlenberg, V. & Konzett, J. Rietveld analysis of a high pressure modification of monocalcium oxogallate (CaGa2O4). Z. Anorg. Allg. Chem. 631, 2411–2415 (2005).

    Article  Google Scholar 

  42. 42.

    Bennett, T. D. et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem. Commun. 47, 7983–7985 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Bouëssel du Bourg, L., Ortiz, A. U., Boutin, A. & Coudert, F. X. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs. APL Mater. 2, 124110–124118 (2014).

    Article  Google Scholar 

  44. 44.

    Yang, S. et al. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework. Nat. Chem. 1, 487–493 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Thornton, A. W. et al. Porosity in metal-organic framework glasses. Chem. Commun. 52, 3750–3753 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F.-X. Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening. J. Phys. Chem. Lett. 4, 1861–1865 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Greaves, G. N. et al. Zeolite collapse and polyamorphism. J. Phys. Condens. Matter 19, 415102–415119 (2007).

    Article  Google Scholar 

  48. 48.

    Greaves, G. N. & Meneau, F. Probing the dynamics of instability in zeolitic materials. J. Phys. Condens. Matter 16, 3459–3472 (2004).

    Article  Google Scholar 

  49. 49.

    Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Lima, T. A., Paschoal, V. H., Faria, L. F. O. & Ribeiro, M. C. C. Unraveling the stepwise melting of an ionic liquid. J. Phys. Chem. B 121, 4650–4655 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    McGreevy, R. L. & Pusztai, L. The structure of molten salts. Proc. Math. Phys. Sci. 430, 241–261 (1990).

    CAS  Article  Google Scholar 

  52. 52.

    Yuan, S. et al. PCN-250 under pressure: sequential phase transformation and the implications for MOF densification. Joule 1, 806–815 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Mączka, M. et al. Temperature- and pressure-induced phase transitions in the metal formate framework of [ND4][Zn(DCOO)3] and [NH4][Zn(HCOO)3]. Inorg. Chem. 53, 9615–9624 (2014).

    Article  Google Scholar 

  54. 54.

    Gustafsson, M. & Zou, X. Crystal formation and size control of zeolitic imidazolate frameworks with mixed imidazolate linkers. J. Porous Mater. 20, 55–63 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    Filik, J. et al. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2. J. Appl. Crystallogr. 50, 959–966 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    Dorogokupets, P. I. & Dewaele, A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales. High Press. Res. 27, 431–446 (2007).

    CAS  Article  Google Scholar 

  57. 57.

    Dewaele, A., Torrent, M., Loubeyre, P. & Mezouar, M. Compression curves of transition metals in the mbar range: experiments and projector augmented-wave calculations. Phys. Rev. B 78, 104102–104115 (2008).

    Article  Google Scholar 

  58. 58.

    Rekhi, S., Dubrovinsky, L. S. & Saxena, S. K. Temperature-induced ruby fluorescence shifts up to a pressure of 15 GPa in an externally heated diamond anvil cell. HighTemp. High Press. 31, 299–305 (1999).

    CAS  Article  Google Scholar 

  59. 59.

    Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).

    CAS  Article  Google Scholar 

  60. 60.

    Stinton, G. W. & Evans, J. S. O. Parametric Rietveld refinement. J. Appl. Crystallogr. 40, 87–95 (2007).

    CAS  Article  Google Scholar 

Download references


R.N.W. acknowledges support from the EPSRC in the form of a DTG Graduate Studentship. R.N.W. and A.M.B. thank C. Hunter and his group, at the Department of Chemistry (University of Cambridge), for the use of their HPLC facilities. T.D.B. thanks the Royal Society for a University Research Fellowship and for their support (UF150021). C.Z. acknowledges the financial support of the Elite Research Travel Scholarship from the Danish Ministry of Higher Education and Science. We thank Diamond Light Source for access to beamline I15 (EE16133 and EE19046-1). This work benefitted from the financial support of ANRT (thèse CIFRE 2015/0268) and access to HPC platforms provided by a GENCI grant (A0050807069). Gas sorption on the ZIF-62 glass was supported by a grant from the National Science Foundation, Division of Chemistry under award number CHE-1661655. Synthesis of MOFs was supported by a grant from the National Science Foundation under award number CHE-1359906 (to S.M.C.). L. Friche, N. Bandata and O. T. Qasvini (Massey Unviersity) are thanked for technical assistance, alongside B. R. Pimentel (UCSD).

Author information




T.D.B. and S.A.T.R. designed the project. R.N.W., G.I.L, S.A., S.G.M, A.K.K., M.T.W., S.F., C.Z., C.W. and T.D.B. performed the PXRD experiments. S.G.M. designed and constructed the high-P-T PXRD equipment. R.N.W. performed melting point determinations, Raman spectroscopy and microscopy, and analysed XRD and spectroscopic data. H.P. and C.Z. performed DSC measurements. A.M.B. and R.N.W. performed HPLC measurements. X.Y, S.M.C. and S.G.T. performed gas sorption measurements. R.G. and F.-X.C. designed, performed and analysed the molecular simulations. All authors participated in discussing the data. R.N.W. and T.D.B. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Thomas D. Bennett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–22, Supplementary Tables 1–5, Supplementary References 1–10

Supplementary Video 1

In situ video of melting of ZIF-62 crystals at high pressure and temperature, with speed-up factor of ×8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Widmer, R.N., Lampronti, G.I., Anzellini, S. et al. Pressure promoted low-temperature melting of metal–organic frameworks. Nat. Mater. 18, 370–376 (2019).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing