Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels


Hydrogels serve as valuable tools for studying cell–extracellular matrix interactions in three-dimensional environments that recapitulate aspects of native extracellular matrix. However, the impact of early protein deposition on cell behaviour within hydrogels has largely been overlooked. Using a bio-orthogonal labelling technique, we visualized nascent proteins within a day of culture across a range of hydrogels. In two engineered hydrogels of interest in three-dimensional mechanobiology studies—proteolytically degradable covalently crosslinked hyaluronic acid and dynamic viscoelastic hyaluronic acid hydrogels—mesenchymal stromal cell spreading, YAP/TAZ nuclear translocation and osteogenic differentiation were observed with culture. However, inhibition of cellular adhesion to nascent proteins or reduction in nascent protein remodelling reduced mesenchymal stromal cell spreading and nuclear translocation of YAP/TAZ, resulting in a shift towards adipogenic differentiation. Our findings emphasize the role of nascent proteins in the cellular perception of engineered materials and have implications for in vitro cell signalling studies and application to tissue repair.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Nascent protein deposition by encapsulated hMSCs occurs early, independent of hydrogel type.
Fig. 2: Nascent ECM proteins create an adhesive layer at the cell–hydrogel interface.
Fig. 3: Adhesion to nascent proteins controls hMSC mechanosensing in degradable hydrogels.
Fig. 4: Dynamic hydrogel composition modulates viscoelastic properties and cell spreading.
Fig. 5: Nascent protein remodelling is required for cell spreading and osteogenesis in dynamic hydrogels.
Fig. 6: Nascent protein adhesion and remodelling enhance cell spreading in degradable/dynamic hydrogels.

Data availability

All the data generated or analysed during this study are included within this article and its Supplementary Information. Additional information is available from the corresponding author on request.


  1. 1.

    Kim, S. H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Guvendiren, M. & Burdick, J. A. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24, 841–846 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Drury, J. L. & Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Schultz, K. M., Kyburz, K. A. & Anseth, K. S. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc. Natl Acad. Sci. USA 112, E3757–E3764 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Wang, H. & Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 27, 3717–3736 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Rosales, A. M. & Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016).

  11. 11.

    Unlu, G., Levic, D. S., Melville, D. B. & Knapik, E. W. Trafficking mechanisms of extracellular matrix macromolecules: insights from vertebrate development and human diseases. Int. J. Biochem. Cell Biol. 47, 57–67 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta 1840, 2506–2519 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Kadler, K. E., Hill, A. & Canty-Laird, E. G. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20, 495–501 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Gjorevski, N. & Nelson, C. M. Bidirectional extracellular matrix signaling during tissue morphogenesis. Cytokine Growth Factor Rev. 20, 459–465 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    McLeod, C. M. & Mauck, R. L. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation. Sci. Rep. 6, 38852 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Bian, L., Guvendiren, M., Mauck, R. L. & Burdick, J. A. Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc. Natl Acad. Sci. USA 110, 10117–10122 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Nicodemus, G. D., Skaalure, S. C. & Bryant, S. J. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels. Acta Biomater. 7, 492–504 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Cai, R., Nakamoto, T., Kawazoe, N. & Chen, G. Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells. Biomaterials 52, 199–207 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Ferreira, S. A. et al. Bi-directional cell–pericellular matrix interactions direct stem cell fate. Nat. Commun. 9, 4049 (2018).

    Article  CAS  Google Scholar 

  21. 21.

    Kubow, K. E. et al. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat. Commun. 6, 8026 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Li, B., Moshfegh, C., Lin, Z., Albuschies, J. & Vogel, V. Mesenchymal stem cells exploit extracellular matrix as mechanotransducer. Sci. Rep. 3, 2425 (2013).

    Article  Google Scholar 

  23. 23.

    Scott, L. E., Mair, D. B., Narang, J. D., Feleke, K. & Lemmon, C. A. Fibronectin fibrillogenesis facilitates mechano-dependent cell spreading, force generation, and nuclear size in human embryonic fibroblasts. Integr. Biol. 7, 1454–1465 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Daley, W. P., Peters, S. B. & Larsen, M. Extracellular matrix dynamics in development and regenerative medicine. J. Cell Sci. 121, 255–264 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Jansen, K. A., Atherton, P. & Ballestrem, C. Mechanotransduction at the cell–matrix interface. Semin. Cell Dev. Biol. 71, 75–83 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Dieterich, D. C. et al. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2, 532–540 (2007).

    Article  Google Scholar 

  27. 27.

    Caliari, S. R., Vega, S. L., Kwon, M., Soulas, E. M. & Burdick, J. A. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103, 314–323 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Doyle, A. D. & Yamada, K. M. Mechanosensing via cell–matrix adhesions in 3D microenvironments. Exp. Cell Res. 343, 60–66 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Hytonen, V. P. & Wehrle-Haller, B. Protein conformation as a regulator of cell–matrix adhesion. Phys. Chem. Chem. Phys. 16, 6342–6357 (2014).

    Article  Google Scholar 

  30. 30.

    Tuckwell, D., Calderwood, D. A., Green, L. J. & Humphries, M. J. Integrin alpha 2 I-domain is a binding site for collagens. J. Cell Sci. 108, 1629–1637 (1995).

    CAS  Google Scholar 

  31. 31.

    Connelly, J. T., Petrie, T. A., Garcia, A. J. & Levenston, M. E. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels. Eur. Cells Mater. 22, 168–177 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Keselowsky, B. G., Collard, D. M. & Garcia, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    Massia, S. P. & Hubbell, J. A. Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. J. Biol. Chem. 267, 14019–14026 (1992).

    CAS  Google Scholar 

  34. 34.

    Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    Brusatin, G., Panciera, T., Gandin, A., Citron, A. & Piccolo, S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nat. Mater. 17, 1063–1075 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Fogerty, F. J., Akiyama, S. K., Yamada, K. M. & Mosher, D. F. Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies. J. Cell Biol. 111, 699–708 (1990).

    CAS  Article  Google Scholar 

  37. 37.

    McDonald, J. A. et al. Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. J. Biol. Chem. 262, 2957–2967 (1987).

    CAS  Google Scholar 

  38. 38.

    Lee, H. P., Gu, L., Mooney, D. J., Levenston, M. E. & Chaudhuri, O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat. Mater. 16, 1243–1251 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Cameron, A. R., Frith, J. E., Gomez, G. A., Yap, A. S. & Cooper-White, J. J. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35, 1857–1868 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Rodell, C. B., Dusaj, N. N., Highley, C. B. & Burdick, J. A. Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking. Adv. Mater. 28, 8419–8424 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Loebel, C., Rodell, C. B., Chen, M. H. & Burdick, J. A. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat. Protoc. 12, 1521–1541 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Rodell, C. B., Kaminski, A. L. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125–4134 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Dooling, L. J., Buck, M. E., Zhang, W. B. & Tirrell, D. A. Programming molecular association and viscoelastic behavior in protein networks. Adv. Mater. 28, 4651–4657 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26, 865–872 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Feng, Y. et al. Exo1: a new chemical inhibitor of the exocytic pathway. Proc. Natl Acad. Sci. USA 100, 6469–6474 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    von Kleist, L. & Haucke, V. At the crossroads of chemistry and cell biology: inhibiting membrane traffic by small molecules. Traffic 13, 495–504 (2012).

    Article  CAS  Google Scholar 

  47. 47.

    Mishev, K., Dejonghe, W. & Russinova, E. Small molecules for dissecting endomembrane trafficking: a cross-systems view. Cell Chem. Biol. 20, 475–486 (2013).

    CAS  Google Scholar 

  48. 48.

    Purcell, B. P. et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater. 13, 653–661 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Sridhar, B. V. et al. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition. Adv. Healthc. Mater. 4, 702–713 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    Blache, U. et al. Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Rep. 19, e45964 (2018).

    Article  CAS  Google Scholar 

  52. 52.

    Cosgrove, B. D. et al. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater. 15, 1297–1306 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Cruz-Acuna, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–1335 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    Hezaveh, H. et al. Encoding stem-cell-secreted extracellular matrix protein capture in two and three dimensions using protein binding peptides. Biomacromolecules 19, 721–730 (2018).

    CAS  Article  Google Scholar 

  56. 56.

    Gardner, O. F., Alini, M. & Stoddart, M. J. Mesenchymal stem cells derived from human bone marrow. Methods Mol. Biol. 1340, 41–52 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    Schoen, R. C., Bentley, K. L. & Klebe, R. J. Monoclonal antibody against human fibronectin which inhibits cell attachment. Hybrid 1, 99–108 (1982).

    CAS  Article  Google Scholar 

  58. 58.

    Gramlich, W. M., Kim, I. L. & Burdick, J. A. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34, 9803–9811 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    Wade, R. J., Bassin, E. J., Rodell, C. B. & Burdick, J. A. Protease-degradable electrospun fibrous hydrogels. Nat. Commun. 6, 6639 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Almany, L. & Seliktar, D. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26, 2467–2477 (2005).

    CAS  Article  Google Scholar 

  61. 61.

    Bauer, A. et al. Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts. Acta Biomater. 62, 82–90 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Doube, M. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).

    Article  Google Scholar 

  63. 63.

    Loebel, C. et al. Cross-linking chemistry of tyramine-modified hyaluronan hydrogels alters mesenchymal stem cell early attachment and behavior. Biomacromolecules 18, 855–864 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    Tseng, Q. et al. Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc. Natl Acad. Sci. USA 109, 1506–1511 (2012).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Swiss National Foundation through an SNF Early Postdoc Mobility Fellowship (to C.L.), the National Science Foundation (DMR award 1610525, the Center for Engineering MechanoBiology CMMI: 15-48571) and the National Institutes of Health (R01 EB008722). We are grateful for help from the Penn EMRL Electron Microscopy Core for TEM and the Penn CDB Microscopy Core Facility for TFM, and would like to thank D. Seliktar for providing the PEG-DA, and A. Garcia, M. Davidson, R. Daniels, B. Cosgrove and M. D’Este for helpful conversations.

Author information




C.L., R.L.M. and J.A.B. conceived the ideas and designed the experiments. C.L. conducted the experiments and analysed the data. C.L., R.L.M. and J.A.B. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Jason A. Burdick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–25, Supplementary Table 1

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loebel, C., Mauck, R.L. & Burdick, J.A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019). https://doi.org/10.1038/s41563-019-0307-6

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing