Exploiting the interplay between gain, loss and the coupling strength between different optical components creates a variety of new opportunities in photonics to generate, control and transmit light. Inspired by the discovery of real eigenfrequencies for non-Hermitian Hamiltonians obeying parity–time (PT) symmetry, many counterintuitive aspects are being explored, particularly close to the associated degeneracies also known as ‘exceptional points’. This Review explains the underlying physical principles and discusses the progress in the experimental investigation of PT-symmetric photonic systems. We highlight the role of PT symmetry and non-Hermitian dynamics for synthesizing and controlling the flow of light in optical structures and provide a roadmap for future studies and potential applications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A quantum battery with quadratic driving
Communications Physics Open Access 04 November 2023
-
Theoretical and experimental characterization of non-Markovian anti-parity-time systems
Communications Physics Open Access 20 October 2023
-
Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena
Nature Communications Open Access 07 September 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Livio, M. Why symmetry matters. Nature 490, 472–473 (2012).
Weinberg, S. Symmetry: a ‘key to nature’s secrets’. The New York Review of Books https://www.nybooks.com/articles/2011/10/27/symmetry-key-natures-secrets/ (2011).
Kato, T. Perturbation Theory of Linear Operators (Springer, 1966).
Teller, E. J. The crossing of potential surfaces. J. Phys. Chem. 41, 109–116 (1937).
Berry, M. V. M. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).
Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 68, 985–1013 (1996).
Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010).
Özdemir, Ş. K. et al. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl Acad. Sci. USA 111, E3836–E3844 (2014).
Bender, C. M. & Boettcher, S. Real spectra in non-hermitian hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).
El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).
Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).
Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).
Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).
Brandstetter, M. et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014).
Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).
Ramezani, H., Kottos, T., El-Ganainy, R. & Christodoulides, D. N. Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82, 43803 (2010).
Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).
Chang, L. et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).
Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).
Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012).
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).
Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).
Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010).
Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).
Sun, Y., Tan, W., Li, H., Li, J. & Chen, H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014).
Wiersig, J. Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Phys. Rev. A 89, 012119 (2014).
Kim, M., Kwon, K., Shim, J., Jung, Y. & Yu, K. Partially directional microdisk laser with two Rayleigh scatterers. Opt. Lett. 39, 2423–2426 (2014).
Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–466 (2016).
Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).
Peng, P. et al. Anti-parity-time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).
Zhang, Z. et al. Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices. Phys. Rev. Lett. 117, 123601 (2016).
Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).
Jing, H., Ozdemir, S. K., Lu, X.-Y., Zhang, J., Yang, L. & Nori, F. PT-symmetric phonon laser. Phys. Rev. Lett. 13, 053604 (2014).
Jing, H. et al. Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015).
Jing, H., Ozdemir, S. K., Lü, H. & Nori, F. High-order exceptional points in optomechanics. Sci. Rep. 7, 3386 (2017).
Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479 (2018).
Schönleber, D. W., Eisfeld, A. & El-Ganainy, R. Optomechanical interactions in non-Hermitian photonic molecules. New J. Phys. 18, 045014 (2016).
Zhu, X., Ramezani, H., Shi, C., Zhu, J. & Zhang, X. PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).
Fleury, R., Sounas, D. L. & Alù, A. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 6, 5905 (2015).
Ding, K., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6, 021007 (2016).
Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011).
Benisty, H. et al. Implementation of PT symmetric devices using plasmonics: principle and applications. Opt. Express 19, 18004–18019 (2011).
Alaeian, H. & Dionne, J. A. Parity-time-symmetric plasmonic metamaterials. Phys. Rev. A 89, 033829 (2014).
Kang, M., Liu, F. & Li, J. Effective spontaneous PT-symmetry breaking in hybridized metamaterials. Phys. Rev. A 87, 053824 (2013).
Sun, Y., Tan, W., Li, H.-Q., Li, Jensen & Chen, H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014).
Kang, M., Chen, J. & Chong, Y. D. Chiral exceptional points in metasurfaces. Phys. Rev. A 94, 033834 (2016).
Xiao, S., Gear, J., Rotter, S. & Li, J. Effective PT-symmetric metasurfaces for subwavelength amplified sensing. New J. Phys. 18, 085004 (2016).
Fleury, R., Sounas, D. L. & Alù, A. Negative refraction and planar focusing based on parity-time symmetric metasurfaces. Phys. Rev. Lett. 113, 023903 (2014).
Ding, K., Zhang, Z. Q. & Chan, C. T. Coalescence of exceptional points and phase diagrams for one-dimensional PT-symmetric photonic crystals. Phys. Rev. B 92, 235310 (2015).
Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).
Cerjan, A., Raman, A. & Fan, S. Exceptional contours and band structure design in parity-time symmetric photonic crystals. Phys. Rev. Lett. 116, 203902 (2016).
Konotop, V., Yang, J. & Zezyulin, D. A. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016).
Suchkov, S. V. et al. Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photon. Rev. 10, 177–213 (2016).
Chen, Y., Snyder, A. W. & Payne, D. N. Twin Core Nonlinear Couplers with Gain and Loss. IEEE J. Quant. Electron. 28, 239–245 (1992).
Malomed, B. A., Peng, G. D. & Chu, P. L. Nonlinear-optical amplifier based on a dual-core fiber. Opt. Lett. 21, 330–332 (1996).
Visser, T. D., Blok, H. & Lenstra, D. Modal Analysis of a Planar Waveguide with Gain and Losses. IEEE J. Quant. Electron. 31, 1803–1810 (1995).
Ornigotti, M. & Szameit, A. Quasi-PT-symmetry in passive photonic lattices. J. Opt. 16, 065501 (2014).
Bittner, S. et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett. 108, 024101 (2012).
Eichelkraut., T. et al. Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013).
Lin, Z. et al. Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures. Phys. Rev. Lett. 106, 213901 (2011).
Longhi, S. Invisibility in PT-symmetric complex crystals. J. Phys. A 44, 485302 (2011).
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).
Feng, L. et al. Demonstration of a large-scale optical exceptional point structure. Opt. Express 22, 1760–1767 (2014).
Chang, L. et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).
Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).
Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).
Regensburger, A. et al. Observation of defect states in PT-symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013).
Wimmer, M. et al. Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015).
Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 (2015).
Makris, K. G. et al. Constant-intensity waves and their modulation instability in non-Hermitian potentials. Nat. Commun. 6, 7257 (2015).
Makris, K. G., Brandstötter, A., Ambichl, P., Musslimani, Z. H. & Rotter, S. Wave propagation through disordered media without backscattering and intensity variations. Light Sci. Appl. 6, e17035 (2017).
Rivet, E. et al. Constant-pressure sound waves in non-Hermitian disordered media. Nat. Phys. 14, 942–947 (2018).
Peterman, K. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quant. Electron. 15, 566–570 (1979).
Hamel, W. A. & Woerdman, J. P. Observation of enhanced fundamental linewidth of a laser due to nonorthogonality of its longitudinal eigenmodes. Phys. Rev. Lett. 64, 1506–1509 (1990).
Wenzel, H., Bandelow, U., Wunsche, H. J. & Rehberg, J. Mechanisms of fast self pulsations in two-section DFB lasers. IEEE J. Quant. Electron. 32, 69–78 (1996).
Hodaei, H. et al. Parity-time-symmetric coupled microring lasers operating around an exceptional point. Opt. Lett. 40, 4955–4958 (2015).
Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).
Miri, M.-A., LiKamWa, P. & Christodoulides, D. N. Large area single-mode parity-time-symmetric laser amplifiers. Opt. Lett. 37, 764–766 (2012).
Kim, K.-H. et al. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains. Nat. Commun. 7, 13893 (2016).
Gao, Z. et al. Parity-time symmetry in coherently coupled vertical cavity laser arrays. Optica 4, 323–329 (2017).
Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).
Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).
Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016).
He, L., Ozdemir, S. K. & Yang, L. Whispering gallery microcavity lasers. Laser Photon. Rev. 7, 60–82 (2013).
Lee, J. Y., Luo, X. & Poon, A. W. Reciprocal transmissions and asymmetric modal distributions in waveguidecoupled spiral-shaped microdisk resonators. Opt. Express 15, 14650–14666 (2007).
Wiersig, J. et al. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A 84, 023845 (2011).
Redding, B. et al. Local chirality of optical resonances in ultrasmall resonators. Phys. Rev. Lett. 108, 253902 (2012).
Zhu, J., Özdemir, S. K., He, L. & Yang, L. Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Express 18, 23535–23543 (2010).
Kim, M., Kwon, K., Shim, J., Jung, Y. & Yu, K. Partially directional microdisk laser with two Rayleigh scatterers. Opt. Lett. 39, 2423–2426 (2014).
Wiersig, J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84, 063828 (2011).
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).
Dembowski, C. et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001).
Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. Math. Theor. 44, 435302 (2011).
Graefe, E.-M., Mailybaev, A. A. & Moiseyev, N. Breakdown of adiabatic transfer of light in waveguides in the presence of absorption. Phys. Rev. A 88, 033842 (2013).
Milburn, T. J. et al. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92, 052124 (2015).
Doppler, J. et al. Dynamically encircling exceptional points in a waveguide: asymmetric mode switching from the breakdown of adiabaticity. Nature 537, 76–79 (2016).
Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Kepesidis, K. V. et al. PT-symmetry breaking in the steady state of microscopic gain–loss systems. New J. Phys. 18, 095003 (2016).
Zhang, J. et al. Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes. Phys. Rev. B. 92, 115407 (2015).
Lü, X.-Y., Jing, H., Ma, J.-Y. & Wu, Y. PT-symmetry-breaking chaos in optomechanics. Phys. Rev. Lett. 114, 253601 (2015).
Lü, H., Ozdemir, S. K., Kuang, L.-M., Nori, F. & Jing, H. Exceptional points in random-defect phonon lasers. Phys. Rev. Appl. 8, 044020 (2017).
Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).
Demange, G. & Graefe, E.-M. Signatures of three coalescing eigenfunctions. J. Phys. A 45, 025303 (2012).
Zhang, S., Yong, Z., Zhang, Y. & He, S. Parity-time symmetry breaking in coupled nanobeam cavities. Sci. Rep. 6, 24487 (2015).
Chen, P.-Y. & Jung, J. PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces. Phys. Rev. Appl. 5, 064018 (2016).
Jouybari, S. N. Refractive index measurement using coupled micro-resonator laser based on parity-time symmetry breaking. J. Mod. Opt. 63, 798–803 (2016).
Liu, Z.-P. et al. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett. 117, 110802 (2016).
Chen, W., Ozdemir, S. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).
Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Rudner, M. S. & Levitov, L. S. Topological transition in a non-hermitian quantum walk. Phys. Rev. Lett. 102, 065703 (2009).
Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Schomerus, H. Topologically protected midgap states in complex photonic lattices. Opt. Lett. 38, 1912–1914 (2013).
Hu, Y. C. & Hughes, T. L. Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians. Phys. Rev. B 84, 153101 (2011).
Yuce, C. PT symmetric Floquet topological phase. Eur. Phys. J. D 69, 184 (2015).
Malzard, S., Poli, C. & Schomerus, H. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Phys. Rev. Lett. 115, 200402 (2015).
Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. & Nori, F. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017).
Weimann, S. et al. Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).
Tame, M. S., McEnery, K. R., Ozdemir, S. K., Maier, S. A. & Kim, M. S. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
Schomerus, H. Quantum noise and self-sustained radiation of PT-symmetric systems. Phys. Rev. Lett. 104, 233601 (2010).
Antonosyan, D. A., Solntsev, A. S. & Sukhorukov, A. A. Parity-time anti-symmetric parametric amplifier. Opt. Lett. 40, 4575–4578 (2015).
El-Ganainy, R., Dadap, J. I. & Osgood, R. M. Optical parametric amplification via non-Hermitian phase matching. Opt. Lett. 40, 5086–5089 (2015).
Gardas, B., Deffner, S. & Saxena, A. PT-symmetric slowing down of decoherence. Phys. Rev. A 94, 040101(R) (2016).
Kawabata, K., Ashida, Y. & Ueda, M. Information retrieval and criticality in parity-time-symmetric systems. Phys. Rev. Lett. 119, 190401 (2017).
Ashida, Y., Furukawa, S. & Ueda, M. Parity-time symmetric quantum critical phenomena. Nat. Commun. 8, 15791 (2017).
Özdemir, Ş. K., Zhu, J., He, L. & Yang, L. Estimation of Purcell factor from mode-splitting spectra in an optical microcavity. Phys. Rev. A 83, 033817 (2011).
Acknowledgements
The authors thank A. Brandstötter, M. Horodynski, M. Kühmayer, K. Pichler, A. Schumer and H. Yilmaz, for their help with the figures and illustrations. Ş.K.Ö. is supported by Army Research Office (ARO) grant no. W911NF-16-1-0339, W911NF-18-1-0043, Air Force Office of Scientific Research (AFOSR) award no. FA9550-18-1-0235, National Science Foundation (NSF) (1807485), and by The Pennsylvania State University, Materials Research Institute (MRI). Ş.K.Ö. thanks Jan Mateo for his continuous support. S.R. is supported by the Austrian Science Fund (FWF) through projects no. SFB-NextLite F49-P10 and I 1142-N27, and by the Horizon 2020 programme of the European Union (RISE project NHQWAVE 691209). F.N. is supported in part by the MURI Center for Dynamic Magneto-Optics via AFOSR award no. FA9550-14-1-0040, ARO grant no. W911NF-18-1-0358), Asian Office of Aerospace Research and Development (AOARD) grant no. FA2386-18-1-4045, Japan Science and Technology Agency (JST) (Q-LEAP program, ImPACT program, and CREST grant no. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (JSPS-RFBR grant no. 17-52-50023, and JSPS-FWO grant no.VS.059.18N), RIKEN-AIST Challenge Research Fund, and the John Templeton Foundation.
Author information
Authors and Affiliations
Contributions
Ş.K.Ö. and S.R. wrote the manuscript with contributions from F.N. All authors read and agreed with the content and discussions in the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Özdemir, Ş.K., Rotter, S., Nori, F. et al. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019). https://doi.org/10.1038/s41563-019-0304-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-019-0304-9
This article is cited by
-
Chiral exceptional point and coherent suppression of backscattering in silicon microring with low loss Mie scatterer
eLight (2023)
-
Symmetry-protected topological exceptional chains in non-Hermitian crystals
Communications Physics (2023)
-
A quantum battery with quadratic driving
Communications Physics (2023)
-
Spectral sensitivity near exceptional points as a resource for hardware encryption
Nature Communications (2023)
-
Theory of localization-hindered thermalization in nonlinear multimode photonics
Communications Physics (2023)