Comment | Published:

Nanoelectronics based on topological structures

Topological structures have considerable potential in nanoelectronics and new device concepts. They are key to the design and understanding of novel functionalities in ferroic materials — that is, materials that have one or more types of built-in order such as magnetic, ferroelectric, ferroelastic and multiferroic materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Mermin, N. D. Rev. Mod. Phys. 51, 591–648 (1979).

  2. 2.

    Parkin, S. S. P., Hayashi, M. & Thomas, L. Science 320, 190–194 (2008).

  3. 3.

    Mühlbauer, S. et al. Science 323, 915–919 (2009).

  4. 4.

    Milde, P. et al. Science 340, 1076–1080 (2013).

  5. 5.

    Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Science 336, 198–201 (2012).

  6. 6.

    Monchesky, T. L. Nat. Nanotechnol. 10, 1008–1009 (2015).

  7. 7.

    Farokhipoor, S. et al. Nature 515, 379–383 (2014).

  8. 8.

    Seidel, J. et al. Nat. Mater. 8, 229–234 (2009).

  9. 9.

    Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Rev. Mod. Phys. 84, 119–156 (2012).

  10. 10.

    Li, Y. et al. npj Quant. Mater. 2, 43 (2017).

  11. 11.

    Whyte, J. R. & Gregg, J. M. Nat. Commun. 6, 7361 (2015).

  12. 12.

    Sharma, P. et al. Sci. Adv. 3, e1700512 (2017).

  13. 13.

    Sanchez Santolino, G. et al. Nat. Nanotechnol. 12, 655–662 (2017).

  14. 14.

    Rubio-Marcos, F. et al. Nat. Photon. 12, 29–32 (2018).

  15. 15.

    Wei, X.-K. et al. Nat. Commun. 7, 12385 (2016).

  16. 16.

    Salje, E. K. H. & Scott, J. F. Appl. Phys. Lett. 105, 252904 (2014).

  17. 17.

    Cherifi-Hertel, S. et al. Nat. Commun. 8, 15768 (2017).

  18. 18.

    Salje, E. K. H., Wang, X., Ding, X. & Scott, J. F. Adv. Funct. Mater. 27, 1700367 (2017).

  19. 19.

    Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Nat. Commun. 4, 1808 (2013).

  20. 20.

    Sluka, T., Mokry, P. & Setter, N. Appl. Phys. Lett. 111, 152902 (2017).

  21. 21.

    Lorenz, M. et al. J. Phys. D Appl. Phys. 49, 433001 (2016).

  22. 22.

    Yadav, A. K. et al. Nature 530, 198–201 (2016).

  23. 23.

    Zubko, P. et al. Nature 534, 524–528 (2016).

  24. 24.

    Kim, K.-E. et al. Nat. Commun. 9, 403 (2018).

  25. 25.

    Yasuda, K. et al. Science 358, 1311–1314 (2017).

  26. 26.

    Huang, B. et al. Nature 546, 270–273 (2017).

  27. 27.

    Kézsmárki, I. et al. Nat. Mater. 14, 1116–1122 (2015).

  28. 28.

    Huang, C. et al. Phys. Rev. Lett. 120, 147601 (2018).

  29. 29.

    Gross, I. et al. Nature 549, 252–256 (2017).

  30. 30.

    Chen, W. & Sigrist, M. Phys. Rev. Lett. 114, 157203 (2015).

  31. 31.

    Manz, S. et al. Nat. Photon. 10, 653–656 (2016).

Download references

Acknowledgements

J.S. acknowledges funding support by the Australian Research Council (ARC) through Discovery Grants and the Australian Research Council Centre of Excellence in Future Low‐Energy Electronics Technologies (FLEET; project no. CE170100039).

Author information

Correspondence to Jan Seidel.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Publication history

  • Published

  • Issue Date

DOI

https://doi.org/10.1038/s41563-019-0301-z

Fig. 1: Skyrmions, domain walls and vortices as nanoelectronic elements.
Fig. 2: Diamond colour centre magnetometry for imaging magnetic nanostructures, and direct optical writing of topological structures.