Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonlinear photoresponse of type-II Weyl semimetals


The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective k-space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimetal TaIrTe4 are revealed in the photoresponses, which are related to divergence of the Berry curvature. TaIrTe4 exhibits a large photoresponsivity of 130.2 mA W−1—with 4 μm excitation in an unbiased field-effect transistor at room temperature—arising from the third-order nonlinear optical response, approaching the performance of commercial low-temperature detectors. In addition, the circularly polarized galvanic response is enhanced at 4 μm, possibly due to the same Berry curvature singularity enhancement. Considering the optical selection rule of chiral Weyl cones, this may open the door for studying and controlling the chiral polarization of Weyl fermions with an electric field in addition to the optical helicities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Type-II WSM TaIrTe4 and scanning photocurrent response.
Fig. 2: Giant and anisotropic shift current response.
Fig. 3: Numerical simulation of the shift current response.
Fig. 4: Circular photogalvanic response.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. Ren, Y. F., Qiao, Z. H. & Niu, Q. Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79, 066501 (2016).

    Article  Google Scholar 

  2. Weng, H. M., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227–282 (2015).

    Article  Google Scholar 

  3. Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys. 63, 1–76 (2014).

    Article  CAS  Google Scholar 

  4. Hosur, P. & Qi, X. L. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    Article  CAS  Google Scholar 

  5. Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  6. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  7. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  8. Xu, Y., Zhang, F. & Zhang, C. W. Structured Weyl points in spin–orbit coupled fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015).

    Article  Google Scholar 

  9. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  CAS  Google Scholar 

  10. Chan, C. K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

    Article  Google Scholar 

  11. Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).

    Article  CAS  Google Scholar 

  12. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Article  CAS  Google Scholar 

  13. Belopolski, I. et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points. Nat. Commun. 8, 942 (2017).

    Article  Google Scholar 

  14. Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

    Article  CAS  Google Scholar 

  15. Huang, X. C. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  16. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  17. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    Article  CAS  Google Scholar 

  18. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  Google Scholar 

  19. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. (2019).

    Article  Google Scholar 

  20. Morimoto, T., Zhong, S. D., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016).

    Article  Google Scholar 

  21. von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590–5596 (1981).

    Article  Google Scholar 

  22. Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    Article  CAS  Google Scholar 

  23. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S. W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).

  24. Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

    Article  Google Scholar 

  25. Young, S. M., Zheng, F. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. Phys. Rev. Lett. 109, 236601 (2012).

    Article  Google Scholar 

  26. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  Google Scholar 

  27. de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article  CAS  Google Scholar 

  28. Yang, X., Burch, K. & Ran, Y. Divergent bulk photovoltaic effect in Weyl semimetals. Preprint at (2017).

  29. Koepernik, K. et al. TaIrTe4: a ternary type-II Weyl semimetal. Phys. Rev. B 93, 201101 (2016).

    Article  Google Scholar 

  30. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  31. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  CAS  Google Scholar 

  32. Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  CAS  Google Scholar 

  33. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol. 7, 114–118 (2012).

    Google Scholar 

  34. Liu, Y. N. et al. Raman signatures of broken inversion symmetry and in-plane anisotropy in type-II Weyl semimetal candidate TaIrTe4. Adv. Mater. 30, 1706402 (2018).

    Article  Google Scholar 

  35. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  Google Scholar 

  36. Chan, C. K., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104 (2017).

    Article  Google Scholar 

  37. Yu, R., Weng, H. M., Fang, Z., Ding, H. & Dai, X. Determining the chirality of Weyl fermions from circular dichroism spectra in time-dependent angle-resolved photoemission. Phys. Rev. B 93, 205133 (2016).

    Article  Google Scholar 

  38. Theocharous, E., Ishii, J. & Fox, N. P. A comparison of the performance of a photovoltaic HgCdTe detector with that of large area single pixel QWIPs for infrared radiometric applications. Infrared Phys. Technol. 46, 309–322 (2005).

    Article  CAS  Google Scholar 

  39. Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).

    Article  Google Scholar 

Download references


The authors acknowledge helpful discussions with J. Sipe, R. Muniz and Q. Ma. This project was supported by the National Natural Science Foundation of China (NSFC grants nos. 91750109, 11725415, 11674013, 11774010, 11704012 and 11374021), the National Basic Research Program of China (973 grant no. 2014CB920900), the National Key Research and Development Program of China (grants nos. 2018YFA0305601, 2018YFA0305604 and 2016YFA0301004), the Recruitment Program of Global Experts and the State Key Laboratory of Precision Measurement Technology and Instruments Fund for open topics. Z.L. and P.Y. acknowledge support from the Singapore National Research Foundation under NRF award number NRF-RF2013-08, MOE Tier 2 MOE2016-T2-2-153 and MOE2017-T2-2-136. J.F. acknowledges support from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB28000000). The computations are supported by the High-performance Computing Platform of Peking University and the Tianhe-1 National Supercomputing Center in Tianjin.

Author information

Authors and Affiliations



D.S. conceived the idea and designed the experiments. Y.P. synthesized the bulk TaIrTe4 materials under the supervision of Z.L. Y.L. fabricated the TaIrTe4 devices under the supervision of J.-H.C. J.M., J.L. and X.Z. performed the optical measurements under the supervision of D.S. Q.G. performed the band calculations under the supervision of J.F. J.M., Q.G., J.F. and D.S. analysed the results. D.S. wrote the manuscript, assisted by J.M., Q.G., J.-H.C. and J.F. All authors commented on the manuscript.

Corresponding authors

Correspondence to Jian-Hao Chen, Ji Feng or Dong Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–19, Supplementary Notes 1–18, Supplementary References 1–16

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Gu, Q., Liu, Y. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing