Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy

Abstract

Borosilicate glass is an important material used in various industries due to its chemical durability, such as for the immobilization of high-level nuclear waste. However, it is susceptible to aqueous corrosion, recognizable by the formation of surface alteration layers (SALs). Here, we report in situ fluid-cell Raman spectroscopic experiments providing real-time insights into reaction and transport processes during the aqueous corrosion of a borosilicate glass. The formation of a several-micrometre-thick water-rich zone between the SAL and the glass, interpreted as an interface solution, is detected, as well as pH gradients at the glass surface and within the SAL. By replacing the solution with a deuterated solution, it is observed that water transport through the SAL is not rate-limiting. The data support an interface-coupled dissolution–reprecipitation process for SAL formation. Fluid-cell Raman spectroscopic experiments open up new avenues for studying solid–water reactions, with the ability to in situ trace specific sub-processes in real time by using stable isotopes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up for in situ fluid-cell Raman spectroscopy measurements and representative Raman spectra from the borosilicate glass, the SAL and the deuterated bicarbonate solution at 85 °C.
Fig. 2: Distribution and chemical properties of the solution and the silica product phase as a function of time and space at 85 °C.
Fig. 3: Time dependence of the glass retreat and retreat rate as well as chemical and textural characteristics of the dried SAL.
Fig. 4: Solution pH as a function of the distance from the glass surface at a given time as well as representative Raman spectra of the aqueous carbonate bands from which the pH was determined.
Fig. 5: In situ deuterium concentration profiles across the SAL for different times after partial solution exchange with a deuterated bicarbonate solution.

Similar content being viewed by others

Data availability

The datasets collected and analysed in the current study are available from the corresponding author upon request.

References

  1. Newton, R. G. The durability of glass - a review. Glass Technol. 26, 21–38 (1985).

    CAS  Google Scholar 

  2. Bunker, B. Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids 179, 300–308 (1994).

    Article  CAS  Google Scholar 

  3. Stroncik, N. A. & Schmincke, H.-U. Palagonite – a review. Int. J. Earth Sci. 91, 680–697 (2002).

    Article  CAS  Google Scholar 

  4. Grambow, B. Nuclear waste glasses - How durable? Elements 2, 357–364 (2006).

    Article  Google Scholar 

  5. Gin, S. et al. An international initiative on long-term behavior of high-level nuclear waste glass. Mater. Today 16, 243–248 (2013).

    Article  CAS  Google Scholar 

  6. Cailleteau, C. et al. Insight into silicate-glass corrosion mechanisms. Nat. Mater. 7, 978–983 (2008).

    Article  CAS  Google Scholar 

  7. Gin, S., Ryan, J. V., Schreiber, D. K., Neeway, J. & Cabié, M. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: application to a nuclear glass specimen altered 25 years in a granitic environment. Chem. Geol. 349–350, 99–109 (2013).

    Article  Google Scholar 

  8. Gin, S. et al. The controversial role of inter-diffusion in glass alteration. Chem. Geol. 440, 115–123 (2016).

    Article  CAS  Google Scholar 

  9. Geisler, T. et al. Aqueous corrosion of borosilicate glass under acidic conditions: A new corrosion mechanism. J. Non-Cryst. Solids 356, 1458–1465 (2010).

    Article  CAS  Google Scholar 

  10. Geisler, T. et al. The mechanism of borosilicate glass corrosion revisited. Geochim. Cosmochim. Acta 158, 112–129 (2015).

    Article  CAS  Google Scholar 

  11. Hellmann, R. et al. Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion. Nat. Mater. 14, 307–311 (2015).

    Article  CAS  Google Scholar 

  12. Lenting, C. et al. Towards a unifying mechanistic model for silicate glass corrosion. npj Mater. Degrad. 2, 28 (2018).

    Article  Google Scholar 

  13. Frugier, P. et al. SON68 nuclear glass dissolution kinetics: current state of knowledge and basis of the new GRAAL model. J. Nucl. Mater. 380, 8–21 (2008).

    Article  CAS  Google Scholar 

  14. Gin, S., Beaudoux, X., Angéli, F., Jégou, C. & Godon, N. Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides. J. Non-Cryst. Solids 358, 2559–2570 (2012).

    Article  CAS  Google Scholar 

  15. Vernaz, E., Gin, S., Jégou, C. & Ribet, I. Present understanding of R7T7 glass alteration kinetics and their impact on long-term behavior modeling. J. Nucl. Mater. 298, 27–36 (2001).

    Article  CAS  Google Scholar 

  16. Xing, S.-B., Buechele, A. C. & Pegg, I. L. Effect of surface layers on the dissolution of nuclear waste glasses. Mater. Res. Soc. Proc. 333, 541 (1993).

    Article  Google Scholar 

  17. Rebiscoul, D. et al. Morphological evolution of alteration layers formed during nuclear glass alteration: new evidence of a gel as a diffusive barrier. J. Nucl. Mater. 326, 9–18 (2004).

    Article  CAS  Google Scholar 

  18. Rebiscoul, D., Frugier, P., Gin, S. & Ayral, A. Protective properties and dissolution ability of the gel formed during nuclear glass alteration. J. Nucl. Mater. 342, 26–34 (2005).

    Article  CAS  Google Scholar 

  19. Gin, S., Ribet, I. & Couillard, M. Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions. J. Nucl. Mater. 298, 1–10 (2001).

    Article  CAS  Google Scholar 

  20. Gin, S. et al. Dynamics of self-reorganization explains passivation of silicate glasses. Nat. Commun. 9, 2169 (2018).

    Article  Google Scholar 

  21. Gin, S. et al. Origin and consequences of silicate glass passivation by surface layers. Nat. Commun. 6, 6360 (2015).

    Article  CAS  Google Scholar 

  22. Collin, M. et al. Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions. npj Mater. Degrad. 2, 4 (2018).

    Article  Google Scholar 

  23. Grambow, B. & Müller, R. First-order dissolution rate law and the role of surface layers in glass performance assessment. J. Nucl. Mater. 298, 112–124 (2001).

    Article  CAS  Google Scholar 

  24. Grambow, B. A general rate equation for nuclear waste glass corrosion. MRS Online Proc. Libr. Arch. 44, 15 (1984).

    Article  Google Scholar 

  25. Ma, T. et al. A mechanistic model for long-term nuclear waste glass dissolution integrating chemical affinity and interfacial diffusion barrier. J. Nucl. Mater. 486, 70–85 (2017).

    Article  CAS  Google Scholar 

  26. Putnis, A. Why mineral interfaces matter. Science 343, 1441–1442 (2014).

    Article  Google Scholar 

  27. Putnis, A. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral. Mag. 66, 689–708 (2002).

    Article  CAS  Google Scholar 

  28. Putnis, C. V. & Ruiz-Agudo, E. The mineral‒water interface: where minerals react with the environment. Elements 9, 177–182 (2013).

    Article  CAS  Google Scholar 

  29. Steefel, C. I., Beckingham, L. E. & Landrot, G. Micro-continuum approaches for modeling pore-scale geochemical processes. Rev. Mineral. Geochem. 80, 217–246 (2015).

    Article  Google Scholar 

  30. Schalm, O. & Anaf, W. Laminated altered layers in historical glass: density variations of silica nanoparticle random packings as explanation for the observed lamellae. J. Non-Cryst. Solids 442, 1–16 (2016).

    Article  CAS  Google Scholar 

  31. Dohmen, L. et al. Pattern formation in silicate glass corrosion zones. Int. J. Appl. Glass Sci. 4, 357–370 (2013).

    Article  CAS  Google Scholar 

  32. Wang, Y., Jove-Colon, C. F. & Kuhlman, K. L. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals. Sci. Rep. 6, 30256 (2016).

    Article  CAS  Google Scholar 

  33. Brinker, C. J. & Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, 1990).

  34. Iler, R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley, New York, 1979).

  35. Brooker, M. H., Hancock, G., Rice, B. C. & Shapter, J. Raman frequency and intensity studies of liquid H2O, H2 18O and D2O. J. Raman Spectrosc. 20, 683–694 (1989).

    Article  CAS  Google Scholar 

  36. Parkhurst, D. L. & Appelo, C. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations (US Geological Survey, 2013).

  37. Rudolph, W. W., Irmer, G. & Konigsberger, E. Speciation studies in aqueous HCO3 –CO3 2‒ solutions. A combined Raman spectroscopic and thermodynamic study. Dalton Trans. 900–908 (2008).

  38. Putnis, C. V., Tsukamoto, K. & Nishimura, Y. Direct observations of pseudomorphism: compositional and textural evolution at a fluid–solid interface. Am. Mineral. 90, 1909–1912 (2005).

    Article  CAS  Google Scholar 

  39. Ruiz-Agudo, E. et al. Control of silicate weathering by interface-coupled dissolution–precipitation processes at the mineral–solution interface. Geology 44, 567–570 (2016).

    Article  CAS  Google Scholar 

  40. Icenhower, J. P. & Steefel, C. I. Experimentally determined dissolution kinetics of SON68 glass at 90 °C over a silica saturation interval: Evidence against a linear rate law. J. Nucl. Mater. 439, 137–147 (2013).

    Article  CAS  Google Scholar 

  41. Hellmann, R. et al. Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: a study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem. Geol. 294295, 203–216 (2012).

  42. King, H. E., Plümper, O., Geisler, T. & Putnis, A. Experimental investigations into the silicification of olivine: implications for the reaction mechanism and acid neutralization. Am. Mineral. 96, 1503–1511 (2011).

    Article  CAS  Google Scholar 

  43. Pöml, P. et al. Mechanism of hydrothermal alteration of natural self-irradiated and synthetic crystalline titanate-based pyrochlore. Geochim. Cosmochim. Acta 71, 3311–3322 (2007).

    Article  Google Scholar 

  44. Kasioptas, A., Geisler, T., Putnis, C. V., Perdikouri, C. & Putnis, A. Crystal growth of apatite by replacement of an aragonite precursor. J. Cryst. Growth 312, 2431–2440 (2010).

    Article  CAS  Google Scholar 

  45. Sterpenich, J. & Libourel, G. Water diffusion in silicate glasses under natural weathering conditions: evidence from buried medieval stained glasses. J. Non-Cryst. Solids 352, 5446–5451 (2006).

    Article  CAS  Google Scholar 

  46. Mills, R. Self-diffusion in normal and heavy water in the range 1–45 deg. J. Phys. Chem. 77, 685–688 (1973).

    Article  CAS  Google Scholar 

  47. Bourg, I. C. & Steefel, C. I. Molecular dynamics simulations of water structure and diffusion in silica nanopores. J. Phys. Chem. C 116, 11556–11564 (2012).

    Article  CAS  Google Scholar 

  48. Gin, S. et al. The fate of silicon during glass corrosion under alkaline conditions: a mechanistic and kinetic study with the International Simple Glass. Geochim. Cosmochim. Acta 151, 68–85 (2015).

    Article  CAS  Google Scholar 

  49. Liesegang, M., Milke, R., Kranz, C. & Neusser, G. Silica nanoparticle aggregation in calcite replacement reactions. Sci. Rep. 7, 14550 (2017).

    Article  Google Scholar 

  50. Saloman, E. B. & Sansonetti, C. J. Wavelengths, energy level classifications, and energy levels for the spectrum of neutral neon. J. Phys. Chem. Ref. Data 33, 1113–1158 (2004).

    Article  CAS  Google Scholar 

  51. Everall, N. J. Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl. Spectrosc. 54, 773–782 (2000).

    Article  CAS  Google Scholar 

  52. Applegarth, L. M. S. G. A., Pye, C. C., Cox, J. S. & Tremaine, P. R. Raman spectroscopic and ab initio investigation of aqueous boric acid, borate, and polyborate speciation from 25 to 80 °C. Ind. Eng. Chem. Res. 56, 13983–13996 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Paulus (Schott AG) for synthesizing and characterizing the borosilicate glass, and D. Lülsdorf and H. Blanchard (University of Bonn) as well as W. Bauer (Schott AG) for helping with the design and construction of the fluid cell. We acknowledge Schott AG Mainz, Germany, and the German Research Foundation (grant no. GE1094/21-1) for financial support. T.G. and M.B.K.F. are also grateful for financial support provided by the Otto-Schott-Fond.

Author information

Authors and Affiliations

Authors

Contributions

T.G. initiated and planned the study and wrote the first draft of the manuscript. L.D. and C.L. performed the experiments. M.B.K.F. performed Raman measurements to evaluate the detection limit of B solution species as well as the temperature calibration measurements. All authors contributed to the data analysis and interpretation as well as to the final manuscript.

Corresponding author

Correspondence to Thorsten Geisler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Table 1, Supplementary References 1–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geisler, T., Dohmen, L., Lenting, C. et al. Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy. Nat. Mater. 18, 342–348 (2019). https://doi.org/10.1038/s41563-019-0293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0293-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing