Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Memristive crossbar arrays for brain-inspired computing

A Publisher Correction to this article was published on 02 April 2019

This article has been updated

Abstract

With their working mechanisms based on ion migration, the switching dynamics and electrical behaviour of memristive devices resemble those of synapses and neurons, making these devices promising candidates for brain-inspired computing. Built into large-scale crossbar arrays to form neural networks, they perform efficient in-memory computing with massive parallelism by directly using physical laws. The dynamical interactions between artificial synapses and neurons equip the networks with both supervised and unsupervised learning capabilities. Moreover, their ability to interface with analogue signals from sensors without analogue/digital conversions reduces the processing time and energy overhead. Although numerous simulations have indicated the potential of these networks for brain-inspired computing, experimental implementation of large-scale memristive arrays is still in its infancy. This Review looks at the progress, challenges and possible solutions for efficient brain-inspired computation with memristive implementations, both as accelerators for deep learning and as building blocks for spiking neural networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: From materials science to artificial intelligence.
Fig. 2: Impact of device nonlinearity on the capacity of a passive array.
Fig. 3: Memristive synapses and neurons.
Fig. 4: Spiking neural networks with integrated synapses and neurons fully based on memristive or memcapacitive devices.

Similar content being viewed by others

Change history

  • 02 April 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Moore, G. E. Cramming more components onto integrated circuits. Electron. Mag 38, 114–117 (1965).

    Google Scholar 

  2. von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15, 27–75 (1993).This is an exact copy of the original typescript draft written by von Neumann in 1945, with typographical errors corrected.

    Article  Google Scholar 

  3. NVIDIA Launches the World's First Graphics Processing Unit: GeForce 256 http://www.nvidia.com/object/IO_20020111_5424.html (NVIDIA, accessed 30 July 2018).

  4. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In 44th Int. Symp. Computer Architecture (ISCA) 1–12 (ACM, 2017).

  5. Kautz, W. H. Cellular logic-in-memory arrays. IEEE Trans. Comput. C 18, 719–727 (1969).

    Google Scholar 

  6. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  7. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  8. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

  9. Mikolajick, T. et al. FeRAM technology for high density applications. Microelectron. Reliab. 41, 947–950 (2001).

    Article  Google Scholar 

  10. Chua, L. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  11. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  12. Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14, 35–39 (2019).

    Article  CAS  Google Scholar 

  13. Choi, B. J. et al. High-speed and low-energy nitride memristors. Adv. Funct. Mater. 26, 5290–5296 (2016).

    Article  CAS  Google Scholar 

  14. Hu, M., Strachan, J. P., Li, Z. & Williams, S. R. Dot-product engine as computing memory to accelerate machine learning algorithms. In 17th Int. Symp. Quality Electronic Design (ISQED) 374–379 (IEEE, 2016).

  15. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).

    Article  CAS  Google Scholar 

  16. Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    Article  Google Scholar 

  17. Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018).

    Article  CAS  Google Scholar 

  18. Li, C. et al. Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019).

    Article  Google Scholar 

  19. Hu, M. et al. Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).

    Article  CAS  Google Scholar 

  20. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal–oxide memristors. Nature 521, 61–64 (2015).

    Article  CAS  Google Scholar 

  21. Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol. 12, 784–789 (2017).

    Article  CAS  Google Scholar 

  22. Wang, Z. et al. Capacitive neural network with neuro-transistors. Nat. Commun. 9, 3208 (2018).

    Article  CAS  Google Scholar 

  23. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  24. Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).

    Article  CAS  Google Scholar 

  25. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    Article  CAS  Google Scholar 

  26. Jeong, D. S., Kim, K. M., Kim, S., Choi, B. J. & Hwang, C. S. Memristors for energy‐efficient new computing paradigms. Adv. Electron. Mater 2, 1600090 (2016).

    Article  CAS  Google Scholar 

  27. Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2017).

    Google Scholar 

  28. Lee, J. & Lu, W. D. On‐demand reconfiguration of nanomaterials: when electronics meets ionics. Adv. Mater. 30, 1702770 (2018).

    Article  CAS  Google Scholar 

  29. Yang, Y. & Huang, R. Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274–287 (2018).

    Article  Google Scholar 

  30. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    Article  CAS  Google Scholar 

  31. Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

    Article  CAS  Google Scholar 

  32. Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    Article  CAS  Google Scholar 

  33. Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    Article  CAS  Google Scholar 

  34. Yang, J. J. et al. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010).

    Article  CAS  Google Scholar 

  35. Wright, C. D., Hosseini, P. & Vazquez Diosdado, J. A. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater. 23, 2248–2254 (2013).

    Article  CAS  Google Scholar 

  36. Jiang, H. et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016).

    Article  Google Scholar 

  37. Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).

    Article  CAS  Google Scholar 

  38. Chen, J.-Y. et al. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13, 3671–3677 (2013).

    Article  CAS  Google Scholar 

  39. van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Article  CAS  Google Scholar 

  40. Boniardi, M. & Ielmini, D. Physical origin of the resistance drift exponent in amorphous phase change materials. Appl. Phys. Lett. 98, 243506 (2011).

    Article  CAS  Google Scholar 

  41. Yi, W. et al. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors. Nat. Commun. 7, 11142 (2016).

    Article  CAS  Google Scholar 

  42. Lastras-Montaño, M. A. & Cheng, K. T. Resistive random-access memory based on ratioed memristors. Nat. Electron. 1, 466–472 (2018).

    Article  Google Scholar 

  43. Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23, 075201 (2012).

    Article  CAS  Google Scholar 

  44. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

    Article  CAS  Google Scholar 

  45. Shafiee, A. et al. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. in 2016 ACM/IEEE 43rd Int. Symp. Comp. Archit. (ISCA) 14–26 (IEEE, 2016).

  46. Jiang, H. et al. Pulse-width modulation based dot-product engine for neuromorphic computing system using memristor crossbar array. In 2018 IEEE Int. Symp. Circuits and Systems (ISCAS) https://doi.org/10.1109/ISCAS.2018.8351276 (IEEE, 2018).

  47. Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

    Article  Google Scholar 

  48. Woo, J. & Yu, S. Resistive memory-based analog synapse: the pursuit for linear and symmetric weight update. IEEE Nanotechnol. Mag. 12, 36–44 (2018).

    Article  Google Scholar 

  49. Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices: design considerations. Front. Neurosci. 10, 33 (2016).

    Article  Google Scholar 

  50. Suri, M. et al. Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction. In 2011 Int. Electron Devices Meeting (IEDM) 4.4.1–4.4.4 (IEEE, 2011).

  51. Hsu, C.-W. et al. 3D vertical TaOx/TiO2 RRAM with over 103 self-rectifying ratio and sub-µA operating current. In 2013 Int. Electron Devices Meeting (IEDM) 10.4.1–10.4.4 (IEEE, 2013).

  52. Jang, J.-W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y.-H. Optimization of conductance change in Pr(1−x)CaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Lett. 36, 457–459 (2015).

    Article  CAS  Google Scholar 

  53. Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arrays. IEEE Trans. Neural Netw. Learn. Syst. 29, 4782–4790 (2018).

    Article  Google Scholar 

  54. Li, C. et al. Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 8, 15666 (2017).

    Article  CAS  Google Scholar 

  55. Woo, J., Peng, X., & Yu, S. Design considerations of selector device in cross-point RRAM array for neuromorphic computing. In 2018 IEEE Int. Symp. Circuits and Systems (ISCAS) https://doi.org/10.1109/ISCAS.2018.8351735 (IEEE, 2018).

  56. Wang, W. et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci. Adv. 4, eaat4752 (2018).

    Article  Google Scholar 

  57. Hebb, D. O. The Organization of Behavior. (Wiley, New York, 1949).

    Google Scholar 

  58. Sourikopoulos, I. et al. A 4-fJ/spike artificial neuron in 65 nm CMOS technology. Front. Neurosci. 11, 123 (2017).

    Article  Google Scholar 

  59. Indiveri, G., Chicca, E. & Douglas, R. J. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neur. Netw. 17, 211–221 (2006).

    Article  Google Scholar 

  60. Benjamin, B. V. et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716 (2014).

    Article  Google Scholar 

  61. Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker Project. Proc. IEEE 102, 652–665 (2014).

    Article  Google Scholar 

  62. Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    Article  CAS  Google Scholar 

  63. Davies, M. Putting the ‘learning’ in machine learning processors: an introduction to the Loihi neuromorphic research chip. Zenodo https://doi.org/10.5281/zenodo.1313406 (2018).

  64. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  CAS  Google Scholar 

  65. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

    Article  CAS  Google Scholar 

  66. Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D. & Wong, H.-S. P. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Elect. Dev. 58, 2729–2737 (2011).

    Article  CAS  Google Scholar 

  67. Wang, Z. Q. et al. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 22, 2759–2765 (2012).

    Article  CAS  Google Scholar 

  68. La Barbera, S., Vuillaume, D. & Alibart, F. Filamentary switching: synaptic plasticity through device volatility. ACS Nano 9, 941–949 (2015).

    Article  CAS  Google Scholar 

  69. Stoliar, P. et al. A leaky‐integrate‐and‐fire neuron analog realized with a Mott insulator. Adv. Funct. Mater. 27, 1604740 (2017).

    Article  CAS  Google Scholar 

  70. Al-Shedivat, M., Naous, R., Cauwenberghs, G. & Salama, K. N. Memristors empower spiking neurons with stochasticity. IEEE Trans. Emerg. Sel. Topics Circuits Syst. 5, 242–253 (2015).

    Article  Google Scholar 

  71. Mehonic, A. & Kenyon, A. J. Emulating the electrical activity of the neuron using a silicon oxide RRAM cell. Front. Neurosci. 10, 57 (2016).

    Article  Google Scholar 

  72. Zhang, X. et al. An artificial neuron based on a threshold switching memristor. IEEE Elect. Dev. Lett. 39, 308–311 (2018).

    Article  CAS  Google Scholar 

  73. Pantazi, A., Woźniak, S., Tuma, T. & Eleftheriou, E. All-memristive neuromorphic computing with level-tuned neurons. Nanotechnology 27, 355205 (2016).

    Article  Google Scholar 

  74. Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).

    Article  Google Scholar 

  75. Pedretti, G. et al. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci. Rep. 7, 5288 (2017).

    Article  CAS  Google Scholar 

  76. Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).

    Article  CAS  Google Scholar 

  77. Jerry, M., Parihar, A., Grisafe, B., Raychowdhury, A. & Datta, S. Ultra-low power probabilistic IMT neurons for stochastic sampling machine. In 2017 Symp. VLSI Technology (VLSIT) T186–T187 (IEEE, 2017).

  78. Lai, Q. et al. Analog memory capacitor based on field-configurable ion-doped polymers. Appl. Phys. Lett. 95, 213503 (2009).

    Article  CAS  Google Scholar 

  79. Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K. & Cauwenberghs, G. Event-driven contrastive divergence for spiking neuromorphic systems. Front. Neurosci. 7, 272 (2014).

    Article  Google Scholar 

  80. Xia, Q. et al. Memristor−CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009).

    Article  CAS  Google Scholar 

  81. Pi, S., Lin, P. & Xia, Q. Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nanoimprint lithography. J. Vacuum Sci. Technol. B 31, 06FA02 (2013).

    Article  CAS  Google Scholar 

  82. Shulaker, M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    Article  CAS  Google Scholar 

  83. Jang, J. et al. Vertical cell array using TCAT(Terabit Cell Array Transistor) technology for ultra high density NAND flash memory. In 2009 Symp. VLSI Technology (VLSIT) 192–193 (IEEE, 2009).

  84. Clarke, P. Report: TSMC to offer embedded ReRAM in 2019. eeNews http://www.eenewsanalog.com/news/report-tsmc-offer-embedded-reram-2019 (2017).

  85. Yoon, J. H. et al. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 9, 417 (2018).

    Article  CAS  Google Scholar 

  86. Gao, L. et al. Digital-to-analog and analog-to-digital conversion with metal oxide memristors for ultra-low power computing. In 2013 IEEE/ACM Int. Symp. Nanoscale Architectures (NANOARCH) 19–22 (IEEE, 2013).

  87. Pi, S., Ghadiri-Sadrabadi, M., Bardin, J. C. & Xia, Q. Nanoscale memristive radiofrequency switches. Nat. Commun. 6, 7519 (2015).

    Article  CAS  Google Scholar 

  88. Li, Z. et al. Experimental demonstration of a defect-tolerant nanocrossbar demultiplexer. Nanotechnology 19, 165203 (2008).

    Article  CAS  Google Scholar 

  89. Bayat, F. M. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).

    Article  CAS  Google Scholar 

  90. Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Article  CAS  Google Scholar 

  91. Serb, A. et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).

    Article  CAS  Google Scholar 

  92. Midya, R. et al. Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29, 1604457 (2017).

    Article  CAS  Google Scholar 

  93. Srinivasan, V. S. S. et al. Punchthrough-diode-based bipolar RRAM selector by Si epitaxy. IEEE Electron Dev. Lett. 33, 1396–1398 (2012).

    Article  CAS  Google Scholar 

  94. Huang, J.-J., Tseng, Y.-M., Hsu, C.-W. & Hou, T.-H. Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Dev. Lett. 32, 1427–1429 (2011).

    Article  CAS  Google Scholar 

  95. Shin, J. et al. TiO2-based metal–insulator–metal selection device for bipolar resistive random access memory cross-point application. J. Appl. Phys. 109, 033712 (2011).

    Article  CAS  Google Scholar 

  96. Govoreanu, B. et al. High-performance metal–insulator–metal tunnel diode selectors. IEEE Electron Dev. Lett. 35, 63–65 (2014).

    Article  Google Scholar 

  97. Woo, J. et al. Electrical and reliability characteristics of a scaled (30 nm) tunnel barrier selector (W/Ta2O5/TaOx/TiO2/TiN) with excellent performance (JMAX > 107 A/cm2). In 2014 Symp. VLSI Technology (VLSIT) (IEEE, 2014); https://doi.org/10.1109/VLSIT.2014.6894431

  98. Lee, W. et al. Varistor-type bidirectional switch (JMAX > 107 A/cm2, selectivity 104) for 3D bipolar resistive memory arrays. In 2012 Symp. VLSI Technology (VLSIT) 37–38 (IEEE, 2012).

  99. Choi, B. J. et al. Trilayer tunnel selectors for memristor memory cells. Adv. Mater. 28, 356 (2016).

    Article  CAS  Google Scholar 

  100. Kawahara, A. et al. An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput. IEEE J. Solid-State Circuits 48, 178 (2013).

    Article  Google Scholar 

  101. MIEC* Access Device for 3D-Crosspoint Nonvolatile Memory Arrays (IBM, 2013); https://researcher.watson.ibm.com/researcher/files/us-gwburr/MIECOverviewPublicDomain_Jan2013_3.pdf

  102. Govoreanu, B. et al. Thermally stable integrated Se-based OTS selectors with >20 MA/cm2 current drive, > 3.103 half-bias nonlinearity, tunable threshold voltage and excellent endurance. In 2017 Symp. VLSI Technology (VLSIT) T92–T93 (IEEE, 2017).

  103. Ohba, K. et al. Cross point Cu-ReRAM with BC-doped selector. In 2018 IEEE Int. Memory Workshop (IMW) (IEEE, 2018); https://doi.org/10.1109/IMW.2018.8388824

  104. Yasuda, S. et al. A cross point Cu-ReRAM with a novel OTS selector for storage class memory applications. In 2017 Symp. VLSI Technology (VLSIT) T30–T31 (IEEE, 2017).

  105. Yang, H. et al. Novel selector for high density non-volatile memory with ultra-low holding voltage and 107 on/off ratio. In 2015 VLSI Technology Symp. (VLSIT) T130–T131 (IEEE, 2015).

  106. Kim, S. G. et al. Breakthrough of selector technology for cross-point 25-nm ReRAM. In 2017 Int. Electron Devices Meeting (IEDM) 2.1.1-2.1.4 (IEEE, 2017).

  107. Son, M. et al. Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 32, 1579–1581 (2011).

    Article  CAS  Google Scholar 

  108. Kim, W. G. et al. NbO2-based low power and cost effective 1S1R switching for high density cross point ReRAM application. In 2014 Symp. VLSI Technology (VLSIT) (IEEE, 2014); https://doi.org/10.1109/VLSIT.2014.6894405

  109. Cha, E. et al. Nanoscale (10 nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode. In 2013 Int. Electron Devices Meeting (IEDM) 10.5.1–10.5.4 (IEEE, 2013).

  110. Lee, M.-J. et al. Highly-scalable threshold switching select device based on chalcogenide glasses for 3D nanoscaled memory arrays. In 2012 Int. Electron Devices Meeting (IEDM) 2.6.1–2.6.3. (IEEE, 2012).

  111. Sun, J. et al. Physically transient threshold switching device based on magnesium oxide for security application. Small 14, 1800945 (2018).

    Article  CAS  Google Scholar 

  112. Jo, S. H., Kumar, T., Narayanan, S., Lu, W. D. & Nazarian, H. 3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector. In 2014 Int. Electron Devices Meeting (IEDM) 6.7.1–6.7.4 (IEEE, 2014).

  113. Ji, L. et al. Integrated one diode–one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. Nano Lett. 2, 14 (2014).

    Google Scholar 

  114. Wang, G. High‐performance and low‐power rewritable SiOx 1 kbit one diode–one resistor crossbar memory array. Adv. Mater. 25, 4789 (2013).

    Article  CAS  Google Scholar 

  115. Govoreanu, B. Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): an area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell. In 2013 Int. Electron Devices Meeting (IEDM) 10.2.1–10.2.4 (IEEE, 2013).

  116. Song, M. Self-selective characteristics of nanoscale VOx devices for high-density ReRAM applications. IEEE Electron Dev. Lett. 33, 718 (2012).

    Article  CAS  Google Scholar 

  117. Lu, D. et al. Investigations of conduction mechanisms of the self-rectifying n+Si-HfO2-Ni RRAM devices. IEEE Trans. Electron Dev 61, 2294–2301 (2014).

    Article  CAS  Google Scholar 

  118. Wang, M. J., Gao, S., Zeng, F., Song, C. & Pan, F. Unipolar resistive switching with forming-free and self-rectifying effects in Cu/HfO2/n-Si devices. AIP Adv. 6, 025007 (2016).

    Article  CAS  Google Scholar 

  119. Kim, K.-H., Jo, S. H., Gaba, S. & Lu, W. Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl. Phys. Lett. 96, 053106 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors were supported by the US Air Force Research Laboratory, the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency, the Intelligence Advanced Research Projects Activity, the National Science Foundation and the Semiconductor Research Consortium. We thank Z. Wang, C. Li, N. Upadhyay, S. Nonnenmann, S. Maji and M. Hardin for help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiangfei Xia or J. Joshua Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0291-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing