Abstract

The possibility to operate on magnetic materials through the application of electric rather than magnetic fields—promising faster, more compact and energy efficient circuits—continues to spur the investigation of magnetoelectric effects. Symmetry considerations, in particular the lack of an inversion centre, characterize the magnetoelectric effect. In addition, spin–orbit coupling is generally considered necessary to make a spin system sensitive to a charge distribution. However, a magnetoelectric effect not relying on spin–orbit coupling is appealing for spin-based quantum technologies. Here, we report the detection of a magnetoelectric effect that we attribute to an electric field modulation of the magnetic exchange interaction without atomic displacement. The effect is visible in electron paramagnetic resonance absorption of molecular helices under electric field modulation and confirmed by specific symmetry properties and spectral simulation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All relevant data, including ASCII files of the recorded spectra, are available from the authors on request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

  2. 2.

    Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

  3. 3.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

  4. 4.

    Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

  5. 5.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

  6. 6.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

  7. 7.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

  8. 8.

    Ferrando-Soria, J. et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016).

  9. 9.

    Trif, M., Troiani, F., Stepanenko, D. & Loss, D. Spin–electric coupling in molecular magnets. Phys. Rev. Lett. 101, 217201 (2008).

  10. 10.

    Baadji, N. et al. Electrostatic spin crossover effect in polar magnetic molecules. Nat. Mater. 8, 813–817 (2009).

  11. 11.

    Islam, M. F., Nossa, J. F., Canali, C. M. & Pederson, M. First-principles study of spin–electric coupling in a Cu3 single molecular magnet. Phys. Rev. B 82, 155446 (2010).

  12. 12.

    Boudalis, A. K., Robert, J. & Turek, P. First demonstration of magnetoelectric coupling in a polynuclear molecular nanomagnet: single-crystal EPR studies of [Fe3O(O2CPh)6(py)3]ClO4 py under static electric fields. Chem. Eur. J. 24, 14896–14900 (2018).

  13. 13.

    Liu, J. et al. Electric field control of spins in molecular magnets. Phys. Rev. Lett. 122, 037202 (2019).

  14. 14.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

  15. 15.

    Bauer, U. et al. Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2014).

  16. 16.

    Caneschi, A., Gatteschi, D., Rey, P. & Sessoli, R. Structure and magnetic ordering of a ferrimagnetic helix formed by manganese(II) and a nitronyl nitroxide radical. Inorg. Chem. 30, 3936–3941 (1991).

  17. 17.

    Caneschi, A. et al. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew. Chem. Int. Ed. 40, 1760–1763 (2001).

  18. 18.

    Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970).

  19. 19.

    Szaller, D., Bordács, S. & Kézsmárki, I. Symmetry conditions for nonreciprocal light propagation in magnetic crystals. Phys. Rev. B 87, 014421 (2013).

  20. 20.

    Sessoli, R. et al. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat. Phys. 11, 69–74 (2015).

  21. 21.

    Scarrozza, M., Barone, P., Sessoli, R. & Picozzi, S. Magnetoelectric coupling and spin-induced electrical polarization in metal–organic magnetic chains. J. Mater. Chem. C 4, 4176–4185 (2016).

  22. 22.

    Vindigni, A., Rettori, A., Pini, M. G., Carbone, C. & Gambardella, P. Finite-sized Heisenberg chains and magnetism of one-dimensional metal systems. Appl. Phys. A 82, 385–394 (2006).

  23. 23.

    Nagata, K. & Tazuke, Y. Short range order effects on EPR frequencies in Heisenberg linear chain antiferromagnets. J. Phys. Soc. Jpn. 32, 337–345 (1972).

  24. 24.

    Karasudani, T. & Okamoto, H. Temperature dependence of EPR frequencies in pure- and pseudo-one dimensional Heisenberg magnets. J. Phys. Soc. Jpn. 43, 1131–1136 (1977).

  25. 25.

    Mims, W. B. The Linear Electric Field Effect in Paramagnetic Resonance (Oxford Univ. Press, Oxford, 1976).

  26. 26.

    George, R. E., Edwards, J. P. & Ardavan, A. Coherent spin control by electrical manipulation of the magnetic anisotropy. Phys. Rev. Lett. 110, 027601 (2013).

  27. 27.

    Wysling, P. & Muller, K. A. Electric-field-modulated resonance lines of non-Kramers ions. J. Phys. C Solid State Phys. 9, 635–645 (1975).

  28. 28.

    Maisuradze, A., Shengelaya, A., Berger, H., Djokić, D. M. & Keller, H. Magnetoelectric coupling in single crystal Cu2(OSeO)3 studied by a novel electron spin resonance technique. Phys. Rev. Lett. 108, 247211 (2012).

  29. 29.

    Annino, G., Villanueva-Garibay, J. A., van Bentum, P. J. M., Klaassen, A. A. K. & Kentgens, A. P. M. A high-conversion-factor, double-resonance structure for high-field dynamic nuclear polarization. Appl. Magn. Reson. 37, 851 (2009).

  30. 30.

    Villanueva-Garibay, J. A., Annino, G., van Bentum, P. J. M. & Kentgens, A. P. M. Pushing the limit of liquid-state dynamic nuclear polarization at high field. Phys. Chem. Chem. Phys. 12, 5846–5849 (2010).

  31. 31.

    Tazuke, Y. & Nagata, K. EPR line-widths of a one-dimensional Heisenberg antiferromagnet CsMnCl32H2O. J. Phys. Soc. Jpn 38, 1003–1010 (1975).

  32. 32.

    Thompson, K. F., Gokler, C., Lloyd, S. & Shor, P. W. Time independent universal computing with spin chains: quantum plinko machine. New J. Phys. 18, 073044 (2016).

  33. 33.

    Bazhanov, D. I., Sivkov, I. N. & Stepanyuk, V. S. Engineering of entanglement and spin state transfer via quantum chains of atomic spins at large separations. Sci. Rep. 8, 14118 (2018).

  34. 34.

    Xu, A. et al. DNA origami: the bridge from bottom to top. Mater. Res. Bull. 42, 943–950 (2017).

  35. 35.

    Rosaleny, L. E. et al. Peptides as versatile platforms for quantum computing. J. Phys. Chem. Lett. 9, 4522–4526 (2018).

  36. 36.

    Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

Download references

Acknowledgements

The financial support was from Italian MIUR through the PRIN 2015 HYFSRT project, from European QuantERA through the SUMO project and from Fondazione CR Firenze. M.F. is grateful to M. Carlà and G. Aloisi for useful discussion and practical assistance, to E. Goovaerts for sharing the initial idea of performing EPR on selected samples by using an electric field, to G. Tobia, who assembled the sample holder, and to A. Orlando for technical assistance. F. La Mattina is acknowledged for seminal discussions on EFM-EPR technique and S. Ciattini for assistance in X-ray characterization. We thank S. Picozzi and M. Scarrozza for having stimulated this research with their seminal theoretical work on this type of magnetoelectric effect. L. Sorace is acknowledged for critical reading of the manuscript.

Author information

Affiliations

  1. Department of Physics and Astronomy and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy

    • Maria Fittipaldi
    •  & Alberto Cini
  2. Istituto per i Processi Chimico-Fisici, IPCF-CNR, Pisa, Italy

    • Giuseppe Annino
  3. Laboratorium für Festkörperphysik, ETH Zürich, Zürich, Switzerland

    • Alessandro Vindigni
  4. DIEF-Department Industrial Engineering and INSTM Research Unit, University of Florence, Florence, Italy

    • Andrea Caneschi
  5. Department of Chemistry ‘Ugo Schiff’ and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy

    • Andrea Caneschi
    •  & Roberta Sessoli

Authors

  1. Search for Maria Fittipaldi in:

  2. Search for Alberto Cini in:

  3. Search for Giuseppe Annino in:

  4. Search for Alessandro Vindigni in:

  5. Search for Andrea Caneschi in:

  6. Search for Roberta Sessoli in:

Contributions

M.F. and R.S. conceived the research. A. Caneschi synthesized the materials and grew the crystals. M.F. and G.A. designed the EFM-EPR set-up with assistance of A.V. G.A. simulated the electric field distribution and calculated the oscillating magnetic field. A. Cini and M.F. recorded and simulated the EPR spectra; A.V. developed the model for the analysis of magnetic data collected by R.S. M.F., A. Cini and R.S. wrote the manuscript with contributions from all authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Maria Fittipaldi or Roberta Sessoli.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–10, Supplementary Tables 1–2, Supplementary Notes 1–4, Supplementary References 1–9

  2. Supplementary Video 1

    Electric field versus magnetic field modulated EPR: this video illustrates why a derivative signal with variable phase is detected when recording the EPR absorption under the modulation of the electric field.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41563-019-0288-5