Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electric field modulation of magnetic exchange in molecular helices

Abstract

The possibility to operate on magnetic materials through the application of electric rather than magnetic fields—promising faster, more compact and energy efficient circuits—continues to spur the investigation of magnetoelectric effects. Symmetry considerations, in particular the lack of an inversion centre, characterize the magnetoelectric effect. In addition, spin–orbit coupling is generally considered necessary to make a spin system sensitive to a charge distribution. However, a magnetoelectric effect not relying on spin–orbit coupling is appealing for spin-based quantum technologies. Here, we report the detection of a magnetoelectric effect that we attribute to an electric field modulation of the magnetic exchange interaction without atomic displacement. The effect is visible in electron paramagnetic resonance absorption of molecular helices under electric field modulation and confirmed by specific symmetry properties and spectral simulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and spin–electric properties of the MnPhOMe molecular helices.
Fig. 2: Magnetic properties of the MnPhOMe molecular helices.
Fig. 3: Numerical simulation of experimental set-up for EFM-EPR.
Fig. 4: EFM-EPR spectra.

Similar content being viewed by others

Data availability

All relevant data, including ASCII files of the recorded spectra, are available from the authors on request.

References

  1. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    Article  CAS  Google Scholar 

  2. Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

    Article  Google Scholar 

  3. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    Article  CAS  Google Scholar 

  4. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  CAS  Google Scholar 

  5. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

  6. Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article  CAS  Google Scholar 

  7. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    Article  CAS  Google Scholar 

  8. Ferrando-Soria, J. et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016).

    Article  CAS  Google Scholar 

  9. Trif, M., Troiani, F., Stepanenko, D. & Loss, D. Spin–electric coupling in molecular magnets. Phys. Rev. Lett. 101, 217201 (2008).

    Article  Google Scholar 

  10. Baadji, N. et al. Electrostatic spin crossover effect in polar magnetic molecules. Nat. Mater. 8, 813–817 (2009).

    Article  CAS  Google Scholar 

  11. Islam, M. F., Nossa, J. F., Canali, C. M. & Pederson, M. First-principles study of spin–electric coupling in a Cu3 single molecular magnet. Phys. Rev. B 82, 155446 (2010).

    Article  Google Scholar 

  12. Boudalis, A. K., Robert, J. & Turek, P. First demonstration of magnetoelectric coupling in a polynuclear molecular nanomagnet: single-crystal EPR studies of [Fe3O(O2CPh)6(py)3]ClO4 py under static electric fields. Chem. Eur. J. 24, 14896–14900 (2018).

    Article  CAS  Google Scholar 

  13. Liu, J. et al. Electric field control of spins in molecular magnets. Phys. Rev. Lett. 122, 037202 (2019).

    Article  Google Scholar 

  14. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    Article  CAS  Google Scholar 

  15. Bauer, U. et al. Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2014).

    Article  Google Scholar 

  16. Caneschi, A., Gatteschi, D., Rey, P. & Sessoli, R. Structure and magnetic ordering of a ferrimagnetic helix formed by manganese(II) and a nitronyl nitroxide radical. Inorg. Chem. 30, 3936–3941 (1991).

    Article  CAS  Google Scholar 

  17. Caneschi, A. et al. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew. Chem. Int. Ed. 40, 1760–1763 (2001).

    Article  CAS  Google Scholar 

  18. Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970).

    Article  Google Scholar 

  19. Szaller, D., Bordács, S. & Kézsmárki, I. Symmetry conditions for nonreciprocal light propagation in magnetic crystals. Phys. Rev. B 87, 014421 (2013).

    Article  Google Scholar 

  20. Sessoli, R. et al. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat. Phys. 11, 69–74 (2015).

    Article  CAS  Google Scholar 

  21. Scarrozza, M., Barone, P., Sessoli, R. & Picozzi, S. Magnetoelectric coupling and spin-induced electrical polarization in metal–organic magnetic chains. J. Mater. Chem. C 4, 4176–4185 (2016).

    Article  CAS  Google Scholar 

  22. Vindigni, A., Rettori, A., Pini, M. G., Carbone, C. & Gambardella, P. Finite-sized Heisenberg chains and magnetism of one-dimensional metal systems. Appl. Phys. A 82, 385–394 (2006).

    Article  CAS  Google Scholar 

  23. Nagata, K. & Tazuke, Y. Short range order effects on EPR frequencies in Heisenberg linear chain antiferromagnets. J. Phys. Soc. Jpn. 32, 337–345 (1972).

    Article  CAS  Google Scholar 

  24. Karasudani, T. & Okamoto, H. Temperature dependence of EPR frequencies in pure- and pseudo-one dimensional Heisenberg magnets. J. Phys. Soc. Jpn. 43, 1131–1136 (1977).

    Article  CAS  Google Scholar 

  25. Mims, W. B. The Linear Electric Field Effect in Paramagnetic Resonance (Oxford Univ. Press, Oxford, 1976).

  26. George, R. E., Edwards, J. P. & Ardavan, A. Coherent spin control by electrical manipulation of the magnetic anisotropy. Phys. Rev. Lett. 110, 027601 (2013).

    Article  Google Scholar 

  27. Wysling, P. & Muller, K. A. Electric-field-modulated resonance lines of non-Kramers ions. J. Phys. C Solid State Phys. 9, 635–645 (1975).

    Article  Google Scholar 

  28. Maisuradze, A., Shengelaya, A., Berger, H., Djokić, D. M. & Keller, H. Magnetoelectric coupling in single crystal Cu2(OSeO)3 studied by a novel electron spin resonance technique. Phys. Rev. Lett. 108, 247211 (2012).

    Article  CAS  Google Scholar 

  29. Annino, G., Villanueva-Garibay, J. A., van Bentum, P. J. M., Klaassen, A. A. K. & Kentgens, A. P. M. A high-conversion-factor, double-resonance structure for high-field dynamic nuclear polarization. Appl. Magn. Reson. 37, 851 (2009).

    Article  CAS  Google Scholar 

  30. Villanueva-Garibay, J. A., Annino, G., van Bentum, P. J. M. & Kentgens, A. P. M. Pushing the limit of liquid-state dynamic nuclear polarization at high field. Phys. Chem. Chem. Phys. 12, 5846–5849 (2010).

    Article  CAS  Google Scholar 

  31. Tazuke, Y. & Nagata, K. EPR line-widths of a one-dimensional Heisenberg antiferromagnet CsMnCl32H2O. J. Phys. Soc. Jpn 38, 1003–1010 (1975).

    Article  CAS  Google Scholar 

  32. Thompson, K. F., Gokler, C., Lloyd, S. & Shor, P. W. Time independent universal computing with spin chains: quantum plinko machine. New J. Phys. 18, 073044 (2016).

    Article  Google Scholar 

  33. Bazhanov, D. I., Sivkov, I. N. & Stepanyuk, V. S. Engineering of entanglement and spin state transfer via quantum chains of atomic spins at large separations. Sci. Rep. 8, 14118 (2018).

    Article  Google Scholar 

  34. Xu, A. et al. DNA origami: the bridge from bottom to top. Mater. Res. Bull. 42, 943–950 (2017).

    Article  CAS  Google Scholar 

  35. Rosaleny, L. E. et al. Peptides as versatile platforms for quantum computing. J. Phys. Chem. Lett. 9, 4522–4526 (2018).

    Article  CAS  Google Scholar 

  36. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support was from Italian MIUR through the PRIN 2015 HYFSRT project, from European QuantERA through the SUMO project and from Fondazione CR Firenze. M.F. is grateful to M. Carlà and G. Aloisi for useful discussion and practical assistance, to E. Goovaerts for sharing the initial idea of performing EPR on selected samples by using an electric field, to G. Tobia, who assembled the sample holder, and to A. Orlando for technical assistance. F. La Mattina is acknowledged for seminal discussions on EFM-EPR technique and S. Ciattini for assistance in X-ray characterization. We thank S. Picozzi and M. Scarrozza for having stimulated this research with their seminal theoretical work on this type of magnetoelectric effect. L. Sorace is acknowledged for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.F. and R.S. conceived the research. A. Caneschi synthesized the materials and grew the crystals. M.F. and G.A. designed the EFM-EPR set-up with assistance of A.V. G.A. simulated the electric field distribution and calculated the oscillating magnetic field. A. Cini and M.F. recorded and simulated the EPR spectra; A.V. developed the model for the analysis of magnetic data collected by R.S. M.F., A. Cini and R.S. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Maria Fittipaldi or Roberta Sessoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–2, Supplementary Notes 1–4, Supplementary References 1–9

Supplementary Video 1

Electric field versus magnetic field modulated EPR: this video illustrates why a derivative signal with variable phase is detected when recording the EPR absorption under the modulation of the electric field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fittipaldi, M., Cini, A., Annino, G. et al. Electric field modulation of magnetic exchange in molecular helices. Nat. Mater. 18, 329–334 (2019). https://doi.org/10.1038/s41563-019-0288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0288-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing