Abstract
Alkali metal–oxygen batteries promise high gravimetric energy densities but suffer from low rate capability, poor cycle life and safety hazards associated with metal anodes. Here we describe a safe, high-rate and long-life oxygen battery that exploits a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode. The proposed potassium biphenyl complex–oxygen battery exhibits an unprecedented cycle life (3,000 cycles) with a superior average coulombic efficiency of more than 99.84% at a high current density of 4.0 mA cm−2. We further reduce the redox potential of biphenyl by adding the electron-donating methyl group to the benzene ring, which successfully achieved a redox potential of 0.14 V versus K/K+. This demonstrates the direction and opportunities to further improve the cell voltage and energy density of the alkali-metal organic–oxygen batteries.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Data supporting the findings of this study are available from the corresponding author upon reasonable request.
References
Grey, C. & Tarascon, J. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).
Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016).
Lu, Y.-C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).
Ren, X. & Wu, Y. A low-overpotential potassium–oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 135, 2923–2926 (2013).
Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).
Gao, X., Chen, Y., Johnson, L. R., Jovanov, Z. P. & Bruce, P. G. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017).
Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017).
Wandt, J., Jakes, P., Granwehr, J., Gasteiger, H. A. & Eichel, R. A. Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 55, 6892–6895 (2016).
McCloskey, B. D., Scheffler, R., Speidel, A., Girishkumar, G. & Luntz, A. C. On the mechanism of nonaqueous Li–O2 electrochemistry on C and its kinetic overpotentials: some implications for Li–air batteries. J. Phys. Chem. C 116, 23897–23905 (2012).
Lu, Y.-C., Gasteiger, H. A., Parent, M. C., Chiloyan, V. & Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid-State Lett. 13, A69–A72 (2010).
Lu, Y.-C. et al. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).
Wang, Y., Liang, Z., Zou, Q., Cong, G. & Lu, Y.-C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium–oxygen batteries. J. Phys. Chem. C 120, 6459–6466 (2016).
Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).
Lu, Y.-C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999–3007 (2011).
Lu, Y.-C., Gasteiger, H. A. & Shao-Horn, Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li–air batteries. J. Am. Chem. Soc. 133, 19048–19051 (2011).
Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016).
Liang, Z. & Lu, Y.-C. Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J. Am. Chem. Soc. 138, 7574–7583 (2016).
Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).
Khan, A. U. & Mahanti, S. Collective electron effects of O2 – in potassium superoxide. J. Chem. Phys. 63, 2271–2278 (1975).
Lee, B. et al. First-principles study of the reaction mechanism in sodium–oxygen batteries. Chem. Mater. 26, 1048–1055 (2014).
Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013).
Hu, Y. et al. Porous perovskite calcium–manganese oxide microspheres as an efficient catalyst for rechargeable sodium–oxygen batteries. J. Mater. Chem. A 3, 3320–3324 (2015).
Li, Y. et al. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries. Chem. Commun. 49, 11731–11733 (2013).
Kim, J., Lim, H.-D., Gwon, H. & Kang, K. Sodium–oxygen batteries with alkyl-carbonate and ether based electrolytes. Phys. Chem. Chem. Phys. 15, 3623–3629 (2013).
Yadegari, H. et al. On rechargeability and reaction kinetics of sodium–air batteries. Energy Environ. Sci. 7, 3747–3757 (2014).
Kim, J. et al. Dissolution and ionization of sodium superoxide in sodium–oxygen batteries. Nat. Commun. 7, 10670 (2016).
Kang, S., Mo, Y., Ong, S. P. & Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na–O2 batteries. Nano. Lett. 14, 1016–1020 (2014).
Black, R. et al. The nature and impact of side reactions in glyme-based sodium–oxygen batteries. ChemSusChem 9, 1795–1803 (2016).
Ren, X. et al. Understanding side reactions in K–O2 batteries for improved cycle life. ACS Appl. Mater. Interfaces 6, 19299–19307 (2014).
Xiao, N., Rooney, R. T., Gewirth, A. A. & Wu, Y. Long-term stability of KO2 in K–O2 batteries. Angew. Chem. Int. Ed. 57, 1227–1231 (2018).
Wang, W., Lai, N.-C., Liang, Z., Wang, Y. & Lu, Y.-C. Superoxide stabilization and a universal KO2 growth mechanism in potassium–oxygen batteries. Angew. Chem. Int. Ed. 57, 5042–5046 (2018).
Xia, C., Black, R., Fernandes, R., Adams, B. & Nazar, L. F. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat. Chem. 7, 496–501 (2015).
Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).
Mason, P. E. et al. Coulomb explosion during the early stages of the reaction of alkali metals with water. Nat. Chem. 7, 250–254 (2015).
Holy, N. Reactions of the radical anions and dianions of aromatic hydrocarbons. Chem. Rev. 74, 243–277 (1974).
Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).
Yu, J. et al. A class of liquid anode for rechargeable batteries with ultralong cycle life. Nat. Commun. 8, 14629 (2017).
Liang, F. et al. A liquid anode for rechargeable sodium–air batteries with low voltage gap and high safety. Nano Energy 49, 574–579 (2018).
Gong, K., Fang, Q., Gu, S., Li, S. F. Y. & Yan, Y. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy Environ. Sci. 8, 3515–3530 (2015).
Ishizu, K., Ohnishi, M. & Shikata, H. ENDOR studies of alkylated biphenyl anion radicals in solution. Relation between molecular size and optimum temperature of ENDOR enhancement. Bull. Chem. Soc. Jpn 50, 76–78 (1977).
Fenton, H. J. H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 65, 899–910 (1894).
Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2012).
Metzger, M., Marino, C., Sicklinger, J., Haering, D. & Gasteiger, H. A. Anodic oxidation of conductive carbon and ethylene carbonate in high-voltage Li-ion batteries quantified by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 162, A1123–A1134 (2015).
Dilimon, V. et al. Superoxide stability for reversible Na–O2 electrochemistry. Sci. Rep. 7, 17635 (2017).
Yang, F., Wang, D., Zhao, Y., Tsui, K.-L. & Bae, S. J. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy 145, 486–495 (2018).
Gyenes, B., Stevens, D., Chevrier, V. & Dahn, J. Understanding anomalous behavior in coulombic efficiency measurements on Li-ion batteries. J. Electrochem. Soc. 162, A278–A283 (2015).
Schwenke, K. U., Meini, S., Wu, X., Gasteiger, H. A. & Piana, M. Stability of superoxide radicals in glyme solvents for non-aqueous Li–O2 battery electrolytes. Phys. Chem. Chem. Phys. 15, 11830–11839 (2013).
Pratt, K. W., Koch, W., Wu, Y. C. & Berezansky, P. Molality-based primary standards of electrolytic conductivity (IUPAC Technical Report). Pure Appl. Chem. 73, 1783–1793 (2001).
Geng, C. et al. Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries. Chin. Phys. B 26, 078201 (2017).
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Stephens, P., Devlin, F., Chabalowski, C. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).
Gaussian 16 Rev. B.01 (Gaussian, Wallingford, 2016).
Petersson, G. A. et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89, 2193–2218 (1988).
Petersson, G. A. & Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991).
Acknowledgements
The work described in this paper was supported by the Research Grant Council of the Hong Kong Administrative Region, China, under the Theme-based Research Scheme through Project T23-60I/17-R and General Research Fund CUHK 14207517. The authors are grateful to Y. Wang for assisting with the OEMS measurements.
Author information
Authors and Affiliations
Contributions
G.C. and Y.-C.L. conceived the project, analysed the data and wrote the manuscript. G.C. performed the density functional theory calculation and conducted the experiments with contributions from W.W. (cell and electrolyte design), N.-C.L. (BpK titration and SEM/EDX measurements) and Z.L. (OEMS and Fenton’s reagent tests).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1–20, Supplementary Tables 1–2, Supplementary Notes 1–4, Supplementary Video Captions 1–2, Supplementary References 1–25
Supplementary Video 1
Reaction of K metal and BpK with bulk water.
Supplementary Video 2
Reaction of K metal and BpK with bulk DMSO.
Rights and permissions
About this article
Cite this article
Cong, G., Wang, W., Lai, NC. et al. A high-rate and long-life organic–oxygen battery. Nat. Mater. 18, 390–396 (2019). https://doi.org/10.1038/s41563-019-0286-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-019-0286-7
This article is cited by
-
All-inorganic nitrate electrolyte for high-performance lithium oxygen battery
Nano Research (2024)
-
Effect of material composition on the performance for ZnO@C/Bi as Zn anode
Ionics (2024)
-
Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries
Nature Communications (2022)
-
Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems
Nature Electronics (2020)
-
Advances in the chemistry and applications of alkali-metal–gas batteries
Nature Reviews Chemistry (2020)