Abstract

Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2,3,4,5,6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7,8,9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All data presented in this work are available on request from the authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

  2. 2.

    Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

  3. 3.

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

  4. 4.

    Baboux, F. et al. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett. 116, 066402 (2016).

  5. 5.

    Dagvadorj, G. et al. Nonequilibrium phase transition in a two-dimensional driven open quantum system. Phys. Rev. X 5, 041028 (2015).

  6. 6.

    Klembt, S., Stepanov, P., Klein, T., Minguzzi, A. & Richard, M. Thermal decoherence of a nonequilibrium polariton quantum fluid. Phys. Rev. Lett. 120, 035301 (2018).

  7. 7.

    Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

  8. 8.

    Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nat. Commun. 5, 3260 (2014).

  9. 9.

    Cuevas, Á. et al. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. Sci. Adv. 4, eaao6814 (2018).

  10. 10.

    Savasta, S., Stefano, O. D., Savona, V. & Langbein, W. Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94, 246401 (2005).

  11. 11.

    Amo, A. et al. Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010).

  12. 12.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

  13. 13.

    Lang, C. et al. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011).

  14. 14.

    Liebisch, T. C., Reinhard, A., Berman, P. R. & Raithel, G. Atom counting statistics in ensembles of interacting Rydberg atoms. Phys. Rev. Lett. 95, 253002 (2005).

  15. 15.

    Jia, N. et al. A strongly interacting polaritonic quantum dot. Nat. Phys. 14, 550–554 (2018).

  16. 16.

    Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

  17. 17.

    Reinhard, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).

  18. 18.

    Walker, P. M. et al. Dark solitons in high velocity waveguide polariton fluids. Phys. Rev. Lett. 119, 097403 (2017).

  19. 19.

    Deveaud, B. et al. Excitonic effects in the luminescence of quantum wells. Chem. Phys. 318, 104–117 (2005).

  20. 20.

    Besga, B. et al. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).

  21. 21.

    Reitzenstein, S. et al. AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007).

  22. 22.

    Wood, A., Vidal, X., Muñoz-Matutano, G. & Volz, T. Non-invasive zero delay calibration of Hanbury Brown and Twiss interferometer. Measurement https://doi.org/10.1016/j.measurement.2019.01.079 (2019).

  23. 23.

    Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

  24. 24.

    Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).

  25. 25.

    Delteil, A. et al. Towards polariton blockade of confined exciton-polaritons. Nat. Mater. https://doi.org/10.1038/s41563-019-0282-y (2019).

  26. 26.

    Casteels, W., Rota, R., Storme, F. & Ciuti, C. Probing photon correlations in the dark sites of geometrically frustrated cavity lattices. Phys. Rev. A 93, 043833 (2016).

  27. 27.

    Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).

  28. 28.

    Miller, D. A. B. Are optical transistors the logical next step?. Nat. Photon. 4, 3–5 (2010).

  29. 29.

    Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 80, 016401 (2017).

  30. 30.

    Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

Download references

Acknowledgements

We thank S. Martin and D. Taylor from the Commonwealth Scientific and Industrial Research Organisation (Lindfield – New South Wales) for their technical support. This work was funded by the Australian Research Council Centre of Excellence for Engineered Quantum Systems (CE110001013 and CE170100009). A.L., J.B., A.A. and M.R. acknowledge support from the French Agence National de la Recherche (contract no. ANR-16-CE30-0021).

Author information

Author notes

  1. These authors contributed equally: Guillermo Muñoz-Matutano, Andrew Wood, Mattias Johnsson.

Affiliations

  1. Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales, Australia

    • Guillermo Muñoz-Matutano
    • , Andrew Wood
    • , Mattias Johnsson
    • , Xavier Vidal
    • , Ben Q. Baragiola
    • , Andreas Reinhard
    • , Benjamin Besga
    • , Maxime Richard
    •  & Thomas Volz
  2. ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University, Sydney, New South Wales, Australia

    • Guillermo Muñoz-Matutano
    • , Andrew Wood
    • , Mattias Johnsson
    • , Xavier Vidal
    • , Ben Q. Baragiola
    • , Andreas Reinhard
    • , Benjamin Besga
    •  & Thomas Volz
  3. ARC Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, Victoria, Australia

    • Ben Q. Baragiola
  4. Centre de Nanosciences et de Nanotechnologies, CNRS (C2N), Universities Paris-Sud and Paris-Saclay, Palaiseau, France

    • Aristide Lemaître
    •  & Jacqueline Bloch
  5. Univ. Lille, CNRS, UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, Lille, France

    • Alberto Amo
  6. Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France

    • Gilles Nogues
    • , Benjamin Besga
    •  & Maxime Richard

Authors

  1. Search for Guillermo Muñoz-Matutano in:

  2. Search for Andrew Wood in:

  3. Search for Mattias Johnsson in:

  4. Search for Xavier Vidal in:

  5. Search for Ben Q. Baragiola in:

  6. Search for Andreas Reinhard in:

  7. Search for Aristide Lemaître in:

  8. Search for Jacqueline Bloch in:

  9. Search for Alberto Amo in:

  10. Search for Gilles Nogues in:

  11. Search for Benjamin Besga in:

  12. Search for Maxime Richard in:

  13. Search for Thomas Volz in:

Contributions

G.M.-M. and A.W. carried out the spectroscopy and photon correlation experiments and analysed the data. M.J., with the help of B.Q.B., implemented the master equation model and contributed to the analysis of the data. G.M.-M., A.W. and M.J. have equally contributed to this research. X.V. built the spectroscopy set-up. A.R. and B.B. built the cavity microscope and designed the laser machining system for making the fibre cavities. A.L., J.B. and A.A. provided the QW sample and discussed the underlying polariton physics. G.N. carried out the finite-elements simulation of the cavity mode. M.R. and T.V. conceived the central idea of the work and related experiments, supervised the experimental work and contributed to discussions. The manuscript was written by G.M.-M., M.J., M.R. and T.V. with varying contributions from all other authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Guillermo Muñoz-Matutano or Thomas Volz.

Supplementary information

  1. Supplementary Information

    Supplementary Sections 1–7, Supplementary Figures 1–11, Supplementary References 1–14

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41563-019-0281-z