Abstract
Quantum interference can profoundly affect charge transport in single molecules, but experiments can usually measure only the conductance at the Fermi energy. Because, in general, the most pronounced features of the quantum interference are not located at the Fermi energy, it is highly desirable to probe charge transport in a broader energy range. Here, by means of electrochemical gating, we measure the conductance and map the transmission functions of single molecules at and around the Fermi energy, and study signatures associated with constructive and destructive interference. With electrochemical gate control, we tune the quantum interference between the highest occupied molecular orbital and lowest unoccupied molecular orbital, and directly observe anti-resonance, a distinct feature of destructive interference. By tuning the molecule in and out of anti-resonance, we achieve continuous control of the conductance over two orders of magnitude, demonstrating a different gating mechanism to conventional field-effect transistors.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Code availability
The DFT code CONQUEST is available at http://www.order-n.org and the corresponding module used to calculate the quantum transport properties is available from M.B. upon reasonable request.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Change history
13 November 2019
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
References
Solomon, G. C. et al. Understanding quantum interference in coherent molecular conduction. J. Chem. Phys. 129, 054701 (2008).
Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotech. 8, 399–410 (2013).
Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).
Lambert, C. J., Sadeghi, H. & Al-Galiby, Q. H. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. C. R. Phys. 17, 1084–1095 (2016).
Yoshizawa, K., Tada, T. & Staykov, A. Orbital views of the electron transport in molecular devices. J. Am. Chem. Soc. 130, 9406–9413 (2008).
Tada, T. & Yoshizawa, K. Molecular design of electron transport with orbital rule: toward conductance-decay free molecular junctions. Phys. Chem. Chem. Phys. 17, 32099–32110 (2015).
Yoshizawa, K. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).
Markussen, T., Stadler, R. & Thygesen, K. S. The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).
Cardamone, D. M., Stafford, C. A. & Mazumdar, S. Controlling quantum transport through a single molecule. Nano Lett. 6, 2422–2426 (2006).
Manrique, D. Z. et al. A quantum circuit rule for interference effects in single-molecule electrical junctions. Nat. Commun. 6, 6389 (2015).
Bürkle, M. et al. The orbital selection rule for molecular conductance as manifested in tetraphenyl-based molecular junctions. J. Am. Chem. Soc. 139, 2989–2993 (2017).
Koole, M., Thijssen, J. M., Valkenier, H., Hummelen, J. C. & Zant, H. S. Jvd Electric-field control of interfering transport pathways in a single-molecule anthraquinone transistor. Nano Lett. 15, 5569–5573 (2015).
Aradhya, S. V. et al. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 12, 1643–1647 (2012).
Guedon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotech. 7, 305–309 (2012).
Baghernejad, M. et al. Electrochemical control of single-molecule conductance by Fermi-level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014).
Baer, R. & Neuhauser, D. Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).
Liu, X. et al. Gating of quantum interference in molecular junctions by heteroatom substitution. Angew. Chem. Int. Ed. 56, 173–176 (2017).
Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221 (2003).
Capozzi, B. et al. Mapping the transmission functions of single-molecule junctions. Nano Lett. 16, 3949–3954 (2016).
Mayor, M. et al. Electric current through a molecular rod—relevance of the position of the anchor groups. Angew. Chem. Int. Ed. 42, 5834–5838 (2003).
Taniguchi, M. et al. Dependence of single-molecule conductance on molecule junction symmetry. J. Am. Chem. Soc. 133, 11426–11429 (2011).
Lovey, D. A. & Romero, R. H. Quantum interference through gated single-molecule junctions. Chem. Phys. Lett. 530, 86–92 (2012).
Li, Y., Mol, J. A., Benjamin, S. C. & Briggs, G. A. D. Interference-based molecular transistors. Sci. Rep. 6, 33686 (2016).
Guenther, J. et al. Activation of aryl halides at gold(i): practical synthesis of (P,C) cyclometalated gold(iii) complexes. J. Am. Chem. Soc. 136, 1778–1781 (2014).
Liu, H.-T. et al. The mixed cyanide halide Au(i) complexes, [XAuCN]− (X = F, Cl, Br, and I): evolution from ionic to covalent bonding. Chem. Sci. 2, 2101–2108 (2011).
Bessonov, A. A. et al. Vibrational interactions in dimethylgold(iii) halides and carboxylates. Vib. Spectrosc. 51, 283–288 (2009).
Xiang, L. et al. Non-exponential length dependence of conductance in iodide-terminated oligothiophene single-molecule tunneling junctions. J. Am. Chem. Soc. 138, 679–687 (2016).
Li, Y., Xiang, L., Palma, J. L., Asai, Y. & Tao, N. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun. 7, 11294 (2016).
Guo, S., Hihath, J., Díez-Pérez, I. & Tao, N. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011).
Cai, Z. et al. Exceptional single-molecule transport properties of ladder-type heteroacene molecular wires. J. Am. Chem. Soc. 138, 10630–10635 (2016).
Xiao, X., Nagahara, L. A., Rawlett, A. M. & Tao, N. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127, 9235–9240 (2005).
Li, Y. et al. Mechanical stretching-induced electron-transfer reactions and conductance switching in single molecules. J. Am. Chem. Soc. 139, 14699–14706 (2017).
Xiang, L. et al. Gate-controlled conductance switching in DNA. Nat. Commun. 8, 14471 (2017).
Frisenda, R., Janssen, V. A. E. C., Grozema, F. C., van der Zant, H. S. J. & Renaud, N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat. Chem. 8, 1099–1104 (2016).
Caneva, S. et al. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotech. 13, 1126–1131 (2018).
Diez-Perez, I. et al. Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nat. Commun. 1, 31 (2010).
Leary, E. et al. Structure−property relationships in redox-gated single molecule junctions—a comparison of pyrrolo-tetrathiafulvalene and viologen redox groups. J. Am. Chem. Soc. 130, 12204–12205 (2008).
Darwish, N. et al. Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule. J. Phys. Chem. C 116, 21093–21097 (2012).
Zotti, L. A. et al. Heat dissipation and its relation to thermopower in single-molecule junctions. New J. Phys. 16, 015004 (2014).
Quek, S. Y. & Khoo, K. H. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges. Acc. Chem. Res. 47, 3250–3257 (2014).
Baghernejad, M. et al. Highly-effective gating of single-molecule junctions: an electrochemical approach. Chem. Commun. 50, 15975–15978 (2014).
Fall, C. J., Binggeli, N. & Baldereschi, A. Deriving accurate work functions from thin-slab calculations. J. Phys. C 11, 2689–2696 (1999).
Paniago, R., Matzdorf, R., Meister, G. & Goldmann, A. Temperature dependence of Shockley-type surface energy bands on Cu(111), Ag(111) and Au(111). Surface Sci. 336, 113–122 (1995).
De Renzi, V. et al. Metal work-function changes induced by organic adsorbates: a combined experimental and theoretical study. Phys. Rev. Lett. 95, 046804 (2005).
Acknowledgements
The authors (N.T. and Y.L.) thank D.N. Beratan and A. Nitzan for stimulating discussions. The authors acknowledge financial support from the National Natural Science Foundation of China (grants nos. 21773117 and 21575062, to H.W., Z.W.), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (Grant-in-Aid for Scientific Research on Innovative Areas ‘Molecular Architectonics: Orchestration of Single Molecules for Novel Functions’; grant no. 25110009, to Y.A. and M.B.), the Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (Start-up); KAKENHI grant no. 15H06889, to M.B.) and the National Natural Science Foundation of China (grants nos. 21674023 and 51722301, to G.L. and G.Z.).
Author contributions
N.T., Y.L., L.X., G.Z., G.L., Y.A. and M.B. designed the research. G.L. and G.Z. synthesized the studied molecules. Y.L., A.R., H.W. and Z.W. performed and analysed the experiments. M.B., Y.A., D.R.B. and T.M. performed and analysed the DFT and transport calculations. Y.L., N.T., M.B. and G.L. wrote the paper. All authors contributed to revising the manuscript and agreed on its final content.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1–19, Supplementary Methods: First-principles transport calculations, Supplementary References 1–17
Rights and permissions
About this article
Cite this article
Li, Y., Buerkle, M., Li, G. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 18, 357–363 (2019). https://doi.org/10.1038/s41563-018-0280-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-018-0280-5
This article is cited by
-
Quantum interference enhances the performance of single-molecule transistors
Nature Nanotechnology (2024)
-
Graphene edge interference improves single-molecule transistors
Nature Nanotechnology (2024)
-
Multiple-channel and symmetry-breaking effects on molecular conductance via side substituents
Science China Materials (2024)
-
Molecule-based vertical transistor via intermolecular charge transport through π-π stacking
Nano Research (2024)
-
Local cation-tuned reversible single-molecule switch in electric double layer
Nature Communications (2023)