Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport

An Author Correction to this article was published on 13 November 2019

This article has been updated

Abstract

Quantum interference can profoundly affect charge transport in single molecules, but experiments can usually measure only the conductance at the Fermi energy. Because, in general, the most pronounced features of the quantum interference are not located at the Fermi energy, it is highly desirable to probe charge transport in a broader energy range. Here, by means of electrochemical gating, we measure the conductance and map the transmission functions of single molecules at and around the Fermi energy, and study signatures associated with constructive and destructive interference. With electrochemical gate control, we tune the quantum interference between the highest occupied molecular orbital and lowest unoccupied molecular orbital, and directly observe anti-resonance, a distinct feature of destructive interference. By tuning the molecule in and out of anti-resonance, we achieve continuous control of the conductance over two orders of magnitude, demonstrating a different gating mechanism to conventional field-effect transistors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Para and meta molecules measured by a gate-controlled STM break junction.
Fig. 2: Conductance measurement of Para and Meta in mesitylene without gate applied.
Fig. 3: IV characteristics of Para and Meta.
Fig. 4: Conductance of Para and Meta versus gate potential.
Fig. 5: Conductance of Para and Meta single molecules measured at different gate potentials.
Fig. 6: Contact geometries and transmission functions.

Code availability

The DFT code CONQUEST is available at http://www.order-n.org and the corresponding module used to calculate the quantum transport properties is available from M.B. upon reasonable request.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 13 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Solomon, G. C. et al. Understanding quantum interference in coherent molecular conduction. J. Chem. Phys. 129, 054701 (2008).

    Google Scholar 

  2. Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotech. 8, 399–410 (2013).

    CAS  Google Scholar 

  3. Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

    CAS  Google Scholar 

  4. Lambert, C. J., Sadeghi, H. & Al-Galiby, Q. H. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. C. R. Phys. 17, 1084–1095 (2016).

    CAS  Google Scholar 

  5. Yoshizawa, K., Tada, T. & Staykov, A. Orbital views of the electron transport in molecular devices. J. Am. Chem. Soc. 130, 9406–9413 (2008).

    CAS  Google Scholar 

  6. Tada, T. & Yoshizawa, K. Molecular design of electron transport with orbital rule: toward conductance-decay free molecular junctions. Phys. Chem. Chem. Phys. 17, 32099–32110 (2015).

    CAS  Google Scholar 

  7. Yoshizawa, K. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).

    CAS  Google Scholar 

  8. Markussen, T., Stadler, R. & Thygesen, K. S. The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).

    CAS  Google Scholar 

  9. Cardamone, D. M., Stafford, C. A. & Mazumdar, S. Controlling quantum transport through a single molecule. Nano Lett. 6, 2422–2426 (2006).

    CAS  Google Scholar 

  10. Manrique, D. Z. et al. A quantum circuit rule for interference effects in single-molecule electrical junctions. Nat. Commun. 6, 6389 (2015).

    CAS  Google Scholar 

  11. Bürkle, M. et al. The orbital selection rule for molecular conductance as manifested in tetraphenyl-based molecular junctions. J. Am. Chem. Soc. 139, 2989–2993 (2017).

    Google Scholar 

  12. Koole, M., Thijssen, J. M., Valkenier, H., Hummelen, J. C. & Zant, H. S. Jvd Electric-field control of interfering transport pathways in a single-molecule anthraquinone transistor. Nano Lett. 15, 5569–5573 (2015).

    CAS  Google Scholar 

  13. Aradhya, S. V. et al. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 12, 1643–1647 (2012).

    CAS  Google Scholar 

  14. Guedon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotech. 7, 305–309 (2012).

    CAS  Google Scholar 

  15. Baghernejad, M. et al. Electrochemical control of single-molecule conductance by Fermi-level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014).

    CAS  Google Scholar 

  16. Baer, R. & Neuhauser, D. Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).

    CAS  Google Scholar 

  17. Liu, X. et al. Gating of quantum interference in molecular junctions by heteroatom substitution. Angew. Chem. Int. Ed. 56, 173–176 (2017).

    CAS  Google Scholar 

  18. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221 (2003).

    CAS  Google Scholar 

  19. Capozzi, B. et al. Mapping the transmission functions of single-molecule junctions. Nano Lett. 16, 3949–3954 (2016).

    CAS  Google Scholar 

  20. Mayor, M. et al. Electric current through a molecular rod—relevance of the position of the anchor groups. Angew. Chem. Int. Ed. 42, 5834–5838 (2003).

    CAS  Google Scholar 

  21. Taniguchi, M. et al. Dependence of single-molecule conductance on molecule junction symmetry. J. Am. Chem. Soc. 133, 11426–11429 (2011).

    CAS  Google Scholar 

  22. Lovey, D. A. & Romero, R. H. Quantum interference through gated single-molecule junctions. Chem. Phys. Lett. 530, 86–92 (2012).

    CAS  Google Scholar 

  23. Li, Y., Mol, J. A., Benjamin, S. C. & Briggs, G. A. D. Interference-based molecular transistors. Sci. Rep. 6, 33686 (2016).

    CAS  Google Scholar 

  24. Guenther, J. et al. Activation of aryl halides at gold(i): practical synthesis of (P,C) cyclometalated gold(iii) complexes. J. Am. Chem. Soc. 136, 1778–1781 (2014).

    CAS  Google Scholar 

  25. Liu, H.-T. et al. The mixed cyanide halide Au(i) complexes, [XAuCN] (X = F, Cl, Br, and I): evolution from ionic to covalent bonding. Chem. Sci. 2, 2101–2108 (2011).

    CAS  Google Scholar 

  26. Bessonov, A. A. et al. Vibrational interactions in dimethylgold(iii) halides and carboxylates. Vib. Spectrosc. 51, 283–288 (2009).

    CAS  Google Scholar 

  27. Xiang, L. et al. Non-exponential length dependence of conductance in iodide-terminated oligothiophene single-molecule tunneling junctions. J. Am. Chem. Soc. 138, 679–687 (2016).

    CAS  Google Scholar 

  28. Li, Y., Xiang, L., Palma, J. L., Asai, Y. & Tao, N. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun. 7, 11294 (2016).

    CAS  Google Scholar 

  29. Guo, S., Hihath, J., Díez-Pérez, I. & Tao, N. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011).

    CAS  Google Scholar 

  30. Cai, Z. et al. Exceptional single-molecule transport properties of ladder-type heteroacene molecular wires. J. Am. Chem. Soc. 138, 10630–10635 (2016).

    CAS  Google Scholar 

  31. Xiao, X., Nagahara, L. A., Rawlett, A. M. & Tao, N. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127, 9235–9240 (2005).

    CAS  Google Scholar 

  32. Li, Y. et al. Mechanical stretching-induced electron-transfer reactions and conductance switching in single molecules. J. Am. Chem. Soc. 139, 14699–14706 (2017).

    CAS  Google Scholar 

  33. Xiang, L. et al. Gate-controlled conductance switching in DNA. Nat. Commun. 8, 14471 (2017).

    CAS  Google Scholar 

  34. Frisenda, R., Janssen, V. A. E. C., Grozema, F. C., van der Zant, H. S. J. & Renaud, N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat. Chem. 8, 1099–1104 (2016).

    CAS  Google Scholar 

  35. Caneva, S. et al. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotech. 13, 1126–1131 (2018).

    CAS  Google Scholar 

  36. Diez-Perez, I. et al. Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nat. Commun. 1, 31 (2010).

    Google Scholar 

  37. Leary, E. et al. Structure−property relationships in redox-gated single molecule junctions—a comparison of pyrrolo-tetrathiafulvalene and viologen redox groups. J. Am. Chem. Soc. 130, 12204–12205 (2008).

    CAS  Google Scholar 

  38. Darwish, N. et al. Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule. J. Phys. Chem. C 116, 21093–21097 (2012).

    CAS  Google Scholar 

  39. Zotti, L. A. et al. Heat dissipation and its relation to thermopower in single-molecule junctions. New J. Phys. 16, 015004 (2014).

    Google Scholar 

  40. Quek, S. Y. & Khoo, K. H. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges. Acc. Chem. Res. 47, 3250–3257 (2014).

    CAS  Google Scholar 

  41. Baghernejad, M. et al. Highly-effective gating of single-molecule junctions: an electrochemical approach. Chem. Commun. 50, 15975–15978 (2014).

    CAS  Google Scholar 

  42. Fall, C. J., Binggeli, N. & Baldereschi, A. Deriving accurate work functions from thin-slab calculations. J. Phys. C 11, 2689–2696 (1999).

    CAS  Google Scholar 

  43. Paniago, R., Matzdorf, R., Meister, G. & Goldmann, A. Temperature dependence of Shockley-type surface energy bands on Cu(111), Ag(111) and Au(111). Surface Sci. 336, 113–122 (1995).

    CAS  Google Scholar 

  44. De Renzi, V. et al. Metal work-function changes induced by organic adsorbates: a combined experimental and theoretical study. Phys. Rev. Lett. 95, 046804 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors (N.T. and Y.L.) thank D.N. Beratan and A. Nitzan for stimulating discussions. The authors acknowledge financial support from the National Natural Science Foundation of China (grants nos. 21773117 and 21575062, to H.W., Z.W.), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (Grant-in-Aid for Scientific Research on Innovative Areas ‘Molecular Architectonics: Orchestration of Single Molecules for Novel Functions’; grant no. 25110009, to Y.A. and M.B.), the Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (Start-up); KAKENHI grant no. 15H06889, to M.B.) and the National Natural Science Foundation of China (grants nos. 21674023 and 51722301, to G.L. and G.Z.).

Author contributions

N.T., Y.L., L.X., G.Z., G.L., Y.A. and M.B. designed the research. G.L. and G.Z. synthesized the studied molecules. Y.L., A.R., H.W. and Z.W. performed and analysed the experiments. M.B., Y.A., D.R.B. and T.M. performed and analysed the DFT and transport calculations. Y.L., N.T., M.B. and G.L. wrote the paper. All authors contributed to revising the manuscript and agreed on its final content.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshihiro Asai, Gang Zhou or Nongjian Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–19, Supplementary Methods: First-principles transport calculations, Supplementary References 1–17

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Buerkle, M., Li, G. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 18, 357–363 (2019). https://doi.org/10.1038/s41563-018-0280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0280-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing