Abstract
The manipulation of magnetic properties by an electric field in magnetoelectric multiferroic materials has driven significant research activity, with the goal of realizing their transformative technological potential. Here, we review progress in the fundamental understanding and design of new multiferroic materials, advances in characterization and modelling tools to describe them, and the exploration of devices and applications. Focusing on the translation of the many scientific breakthroughs into technological innovations, we identify the key open questions in the field where targeted research activities could have maximum impact in transitioning scientific discoveries into real applications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect
Nature Communications Open Access 03 June 2023
-
General nonlinear Hall current in magnetic insulators beyond the quantum anomalous Hall effect
Nature Communications Open Access 26 May 2023
-
Out-of-plane polarization reversal and changes in in-plane ferroelectric and ferromagnetic domains of multiferroic BiFe0.9Co0.1O3 thin films by water printing
Scientific Reports Open Access 04 May 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Schmid, H. Multiferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994).
Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).
Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).
Areas to watch. Science 318, 1858–1859 (2007).
Wang, Y., Hu, J., Lin, Y. & Nan, C.-W. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61–68 (2010).
Pyatakov, A. P. & Zvezdin, A. K. Magnetoelectric and multiferroic media. Phys.-Uspekhi 55, 557–581 (2012).
Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).
Dong, S., Liu, J.-M., Cheong, S. W. & Ren, Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).
Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).
Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).
Vaz, C. et al. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010).
Mundy, J. et al. Atomically engineered ferroic layers yield a room temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).
Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science 303, 661–663 (2004).
Cai, R. et al. Multiferroic nanopatterned hybrid material with room-temperature magnetic switching of the electric polarization. Adv. Mater. 29, 1604604 (2017).
Poddar, S. et al. Room-temperature magnetic switching of the electric polarization in ferroelectric nanopillars. ACS Nano 12, 576–584 (2018).
Belik, A. A. Polar and non-polar phases of BiMO3. J. Sol. Stat. Chem. 195, 32–40 (2012).
Goodenough, J. B. & Zhou, J. Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru). Sci. Technol. Adv. Mater. 16, 036003 (2015).
Inaguma, Y. et al. Structure and Mössbauer studies of F−O ordering in antiferromagnetic perovskite PbFeO2F. Chem. Mater. 17, 1386–1390 (2005).
Simon, A. & Ravez, J. The oxyfluoride ferroelectrics. Ferroelectrics 24, 305–307 (1980).
Katsumata, T., Nakashima, M., Umemoto, H. & Inaguma, Y. Synthesis of the novel perovskite-type oxyfluoride PbScO2F, under high pressure and high temperature. J. Solid State Chem. 181, 2737–2740 (2008).
Lezaic, M. & Spaldin, N. A. High-temperature multiferroicity and strong magnetocrystalline anisotropy in 3d-5d double perovskites. Phys. Rev. B 83, 24410 (2011).
Bilc, D. I. & Singh, D. J. Frustration of tilts and A-site driven ferroelectricity in KNbO3−LiNbO3 alloys. Phys. Rev. Lett. 96, 147602 (2006).
Rushchanskii, K. Z. et al. A multiferroic material to search for the permanent electric dipole moment of the electron. Nat. Mater. 9, 649–654 (2010).
Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–958 (2010).
Bousquet, E., Spaldin, N. A. & Ghosez, Ph Strain-induced ferroelectricity in simple rocksalt binary oxides. Phys. Rev. Lett. 104, 037601 (2010).
Fox, D. L. & Scott, J. F. Ferroelectrically induced ferromagnetism. J. Phys. C 10, L329–L331 (1977).
Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103R (2005).
Oh, Y. S. et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015).
Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).
Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2012).
Benedek, N. A., Rondinelli, J. M., Djani, H., Ghosez, Ph & Lightfoot, P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans. 44, 10543–10558 (2015).
Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).
Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).
Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005).
de Groot, J. et al. Charge order in LuFe2O4: an unlikely route to ferroelectricity. Phys, Rev. Lett. 108, 187601 (2012).
Senn, M. S., Wright, J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012).
Alexe, M. et al. Ferroelectric switching in multiferroic magnetite Fe3O4 thin films. Adv. Mater. 21, 4452–4455 (2009).
Lunkenheimer, P. et al. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 11, 755–758 (2012).
Qin, W., Xu, B. & Ren, S. An organic approach for nanostructured multiferroics. Nanoscale 7, 9122–9132 (2015).
Ren, S. & Wuttig, M. Organic exciton multiferroics. Adv. Mater. 24, 724–727 (2012).
Stroppa, A., Barone, P., Jain, P., Perez-Mato, J. M. & Picozzi, S. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv. Mater. 25, 2284–2290 (2013).
Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-T C. Nat. Mater. 7, 291–294 (2008).
Morin, M. et al. Incommensurate magnetic structure, Fe/Cu chemical disorder, and magnetic interactions in the high-temperature multiferroic YBaCuFeO5. Phys. Rev. B 91, 064408 (2015).
Lee, J. H. & Rabe, K. M. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010).
Rondinelli, J. M. & Spaldin, N. A. Non-d 0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3. Phys. Rev. B 79, 205119 (2009).
Sakai, H. et al. Displacement type ferroelectricity with off-center magnetic ions in perovskite Sr1-xBaxMnO3. Phys. Rev. Lett. 107, 137601 (2011).
Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).
Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).
Bea, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).
He, Q. et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2, 225 (2011).
Yang, J. C. et al. Orthorhombic BiFeO3. Phys. Rev. Lett. 109, 247606 (2012).
Dieguez, O., Gonzalez-Vazquez, O. E., Wojdel, J. C. & Íñiguez, J. First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev. B 83, 094105 (2011).
Agbelele, A. et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv. Mater. 29, 1602327 (2017).
Palai, R. et al. β -phase and γ - β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008).
Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).
Gao, T. et al. A review: preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalysis. Rev. Adv. Mater. Sci. 40, 97–109 (2015).
Kundys, B., Viret, M., Colson, D. & Kundys, D. O. Light-induced size changes in BiFeO3 crystals. Nat. Mater. 9, 803–805 (2010).
Sando, D. et al. Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Commun. 7, 10718 (2016).
Waghmare, S. D. et al. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures. Mater. Res. Bull. 47, 4169–4173 (2012).
Jarrier, R. et al. Surface phase transitions in BiFeO3 below room temperature. Phys. Rev. B 85, 184104 (2012).
Marti, X. et al. Skin layer of BiFeO3 single crystals. Phys. Rev. Lett. 106, 236101 (2011).
Selbach, S. M., Tybell, T., Einarsrud, M.-A. & Grande, T. Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19, 6478–6484 (2007).
Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–235 (2009).
Farokhipoor, S. & Noheda, B. Conduction through 71o domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).
Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011).
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).
Domingo, N. et al. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy. J. Phys. Condens. Matter 29, 334003 (2017).
Daraktchiev, M., Catalan, G. & Scott, J. F. Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 024115 (2010).
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 5, 143–147 (2010).
Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).
Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).
Farokhipoor, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).
Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. Chem. Phys. Chem. 11, 940–950 (2010).
Meier, D. Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015).
Matsubara, M., Kaneko, Y., He, J.-P., Okamoto, H. & Tokura, Y. Ultrafast polarization and magnetization response of multiferroic GaFeO3 using time-resolved nonlinear optical techniques. Phys. Rev. B 79, 140411 (2009).
Kalinin, S. V. & Pennycook, S. Single-atom fabrication with electron and ion beams: from surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly. MRS Bull. 42, 637–643 (2016).
Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
Orenstein, J. W. Ultrafast spectroscopy of quantum materials. Phys. Today 65, 44–50 (September, 2012).
Takahashi, K., Kida, N. & Tonouchi, M. Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films. Phys. Rev. Lett. 96, 117402 (2006).
Borisevich, A. Y. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010).
Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).
Denev, S. A. et al. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).
De Luca, G. et al. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat. Commun. 8, 1419 (2017).
Zhong, W., Vanderbilt, D. & Rabe, K. M. Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73, 1861–1864 (1994).
Rabe, K. M. & Waghmare, U. V. Localized basis for effective lattice Hamiltonians: lattice Wannier functions. Phys. Rev. B 52, 13236–13246 (1995).
Liu, S., Grinberg, I. & Rappe, A. M. Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations. J. Phys. Condens. Matter 25, 102202 (2013).
Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys. Rev. Lett. 109, 037207 (2012).
Karpinsky, D. V. et al. Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO3). npj Comp. Mater. 3, 20 (2017).
Garcia-Fernandez, P., Wojdel, J. C., Iniguez, J. & Junquera, J. Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016).
Wojdel, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Iniguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).
Liu, S., Grinberg, I. & Rappe, A. Intrinsic ferroelectric switching from first principles. Nature 534, 360363 (2016).
Bhattacharjee, S., Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Phys. Rev. Lett. 112, 147601 (2014).
Wang, D., Weerasinghe, J., Albarakati, A. & Bellaiche, L. Terahertz dielectric response and coupled dynamics of ferroelectrics and multiferroics from effective Hamiltonian simulations. Int. J. Mod. Phys. B 27, 1330016 (2013).
Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).
Tolédano, P. et al. Primary ferrotoroidicity in antiferromagnets. Phys. Rev. B 92, 094431 (2015).
Spaldin, N. A., Fechner, M., Bousquet, E., Balatsky, A. V. & Nordström, L. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88, 094429 (2013).
Gao, Y., Vanderbilt, D. & Xiao, D. Microscopic theory of spin toroidization in periodic crystals. Phys. Rev. B 97, 134423 (2018).
Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).
Chandra, P., Dawber, M., Littlewood, P. B. & Scott, J. F. Scaling of the coercive field with thickness in thin-film ferroelectrics. Ferroelectrics 313, 7–13 (2004).
Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).
Bibes, M. & Barthelemy, A. Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).
Song, C., Cui, B., Li, F., Zhou, X. & Pan, F. Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog. Mater. Sci. 87, 33–82 (2017).
Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).
Allibe, J. et al. Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett. 12, 1141–1145 (2012).
Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).
Yu, P. et al. Interface control of bulk ferroelectric polarization. Proc. Natl Acad. Sci. USA 109, 9710–9715 (2012).
Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field effect device. Nat. Mater. 9, 756–761 (2010).
He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).
Gruner, M., Hoffmann, E. & Entel, P. Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in a-FeRh. Phys. Rev. B 67, 064415 (2003).
Moruzzi, V. L. & Marcus, P. M. Antiferromagnetic-ferromagnetic transition in FeRh. Phys. Rev. B 46, 2864 (1992).
Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).
Sun, N. X. & Srinivasan, G. Voltage control of magnetism in multiferroic heterostructures and devices. Spin 2, 1240004 (2012). 1.
Lin, H. et al. Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans. Magn. 52, 4002208 (2016).
Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. Usp. 25, 475–490 (1982).
Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).
Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–403 (2004).
Nakayama, H. et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett. 117, 116602 (2016).
Hoffmann, A. & Bader, S. D. Opportunities at the frontiers of spintronics. Phys. Rev. Appl. 4, 047001 (2015).
Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).
Chu, Y. H. et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).
Maksymovych, P. et al. Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3. Phys. Rev. B 85, 014119 (2012).
Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).
Dhillon, S. S. et al. The 2017 terahertz science and technology road map. J. Phys. D 50, 043001 (2017).
Juraschek, D., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 104401 (2017).
Abraha, K. & Tilley, D. R. Theory of far infrared properties of magnetic surfaces, films and superlattices. Surface Sci. Rep. 24, 129–222 (1996).
Talbayev, D. et al. Long-wavelength magnetic and magnetoelectric excitations in the ferroelectric antiferromagnet BiFeO3. Phys. Rev. B 83, 094403 (2011).
Spaldin, N. A., Cheong, S. W. & Ramesh, R. Multiferroics: past, present, and future. Phys. Today 63, 38–43 (October, 2010).
Acknowledgements
N.A.S. acknowledges financial support from ETH Zürich, and the Roessler Prize of ETH Zürich, which supported her stay in Berkeley during the preparation of this manuscript. R.R. acknowledges the long-term support of the Quantum Materials programme funded by the US Department of Energy, Office of Basic Energy Sciences, which laid the foundation for the key elements of the work on multiferroics as well as the Purnendu Chatterjee chair. R.R. also gratefully acknowledges support from the DARPA-Semiconductor Research Corporation JUMP programme through the ASCENT centre as well as funding from the Intel Corporation. Both authors are immensely grateful to collaborators and colleagues around the world, as well as former and current students and postdocs, all of whom have contributed tremendously to this field and provided the material for this Review.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Spaldin, N.A., Ramesh, R. Advances in magnetoelectric multiferroics. Nature Mater 18, 203–212 (2019). https://doi.org/10.1038/s41563-018-0275-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-018-0275-2
This article is cited by
-
Towards two-dimensional van der Waals ferroelectrics
Nature Materials (2023)
-
Magnetoelectric coupling in multiferroics probed by optical second harmonic generation
Nature Communications (2023)
-
Pressure-induced charge orders and their postulated coupling to magnetism in hexagonal multiferroic LuFe2O4
npj Quantum Materials (2023)
-
Out-of-plane polarization reversal and changes in in-plane ferroelectric and ferromagnetic domains of multiferroic BiFe0.9Co0.1O3 thin films by water printing
Scientific Reports (2023)
-
Small-voltage multiferroic control of two-dimensional magnetic insulators
Nature Electronics (2023)