BIOMEDICAL ELECTRONICS

How slow can you go?

Use of graphene in a transistor configuration offers an alternative to metal electrodes for the recording of ultraslow neural potentials that occur in neurologic diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Potential application of gSGFET technology to clinical recordings of spreading depolarizations after acute brain injury.

References

  1. 1.

    Masvidal-Codina, E. et al. Nat. Mater. https://doi.org/10.1038/s41563-018-0249-4 (2019).

  2. 2.

    Hébert, C. et al. Adv. Funct. Mater. 28, 1703976 (2018).

    Article  Google Scholar 

  3. 3.

    Kostarelos, K., Vincent, M., Hebert, C. & Garrido, J. A. Adv. Mater. 29, 1700909 (2017).

    Article  Google Scholar 

  4. 4.

    Dreier, J. P. Nat. Med. 17, 439–447 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Leao, A. A. J. Neurophysiol. 10, 409–414 (1947).

    CAS  Article  Google Scholar 

  6. 6.

    Dreier, J. P. et al. J. Cereb. Blood Flow Metab. 37, 1595–1625 (2017).

    Article  Google Scholar 

  7. 7.

    Lückl, J. et al. Brain 141, 1734–1752 (2018).

    Article  Google Scholar 

  8. 8.

    Dreier, J. P. et al. Ann. Neurol. 83, 295–310 (2018).

    Article  Google Scholar 

  9. 9.

    Hartings, J. A. et al. J. Cereb. Blood Flow Metab. 37, 1857–1870 (2017).

    Article  Google Scholar 

  10. 10.

    Li, C. et al. J. Neural. Eng. 13, 016008 (2016).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jed A. Hartings.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartings, J.A. How slow can you go?. Nature Mater 18, 194–196 (2019). https://doi.org/10.1038/s41563-018-0272-5

Download citation