Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response

Abstract

Piezoelectric coefficients are constrained by the intrinsic crystal structure of the constituent material. Here we describe design and manufacturing routes to previously inaccessible classes of piezoelectric materials that have arbitrary piezoelectric coefficient tensors. Our scheme is based on the manipulation of electric displacement maps from families of structural cell patterns. We implement our designs by additively manufacturing free-form, perovskite-based piezoelectric nanocomposites with complex three-dimensional architectures. The resulting voltage response of the activated piezoelectric metamaterials at a given mode can be selectively suppressed, reversed or enhanced with applied stress. Additionally, these electromechanical metamaterials achieve high specific piezoelectric constants and tailorable flexibility using only a fraction of their parent materials. This strategy may be applied to create the next generation of intelligent infrastructure, able to perform a variety of structural and functional tasks, including simultaneous impact absorption and monitoring, three-dimensional pressure mapping and directionality detection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design of piezoelectric metamaterials for tailorable piezoelectric charge constants.
Fig. 2: Surface functionalization of PZT with photosensitive monomers and 3D printing of piezoelectric metamaterials with complex micro-architectures.
Fig. 3: Measurement of 3D piezoelectric responses.
Fig. 4: Assembly of architected metamaterial blocks as intelligent infrastructures.
Fig. 5: Force directionality sensing.

Data availability

All data generated during this study are included within the paper and its Supplementary Information files and/or are available from the corresponding author upon request.

References

  1. 1.

    Ferren, R. A. Advances in polymeric piezoelectric transducers. Nature 350, 26–27 (1991).

    Google Scholar 

  2. 2.

    Anderson, J. C. & Eriksson, C. Piezoelectric properties of dry and wet bone. Nature 227, 491–492 (1970).

    CAS  Article  Google Scholar 

  3. 3.

    Priya, S. & Nahm, S. Lead-free Piezoelectrics (Springer, New York, 2011).

  4. 4.

    Li, F. et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Guerin, S. et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 17, 180–186 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Egusa, S. et al. Multimaterial piezoelectric fibres. Nat. Mater. 9, 643–648 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Lu, X., Qu, H. & Skorobogatiy, M. Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 11, 2103–2114 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Wang, X. et al. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Sci. Adv. 2, e1600209 (2016).

    Article  Google Scholar 

  10. 10.

    Ganeshkumar, R., Cheah, C. W., Xu, R., Kim, S.-G. & Zhao, R. A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers. Appl. Phys. Lett. 111, 013905 (2017).

    Article  Google Scholar 

  11. 11.

    Gafforelli, G., Corigliano, A., Xu, R. & Kim, S.-G. Experimental verification of a bridge-shaped, nonlinear vibration energy harvester. Appl. Phys. Lett. 105, 203901 (2014).

    Article  Google Scholar 

  12. 12.

    Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Grupp, D. E. & Goldman, A. M. Giant piezoelectric effect in strontium titanate at cryogenic temperatures. Science 276, 392–394 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    Espinosa, H. D., Bernal, R. A. & Minary-Jolandan, M. A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 24, 4656–4675 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Laurenti, M. et al. Nanobranched ZnO Structure: p-Type doping induces piezoelectric voltage generation and ferroelectric-photovoltaic effect. Adv Mater 27, 4218–4223 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Shin, S. H. et al. Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator. ACS Nano 8, 10844–10850 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Harris, D. T., Burch, M. J., Mily, E. J., Dickey, E. C. & Maria, J. P. Microstructure and dielectric properties with CuO additions to liquid phase sintered BaTiO3 thin films. J. Mater. Res. 31, 1018–1026 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Nag, S. K. & Agrawal, D. C. Piezoelectric and mechanical-properties of ceria-doped lead zirconate titanate ceramics. J. Mater. Sci. 27, 4125–4130 (1992).

    CAS  Article  Google Scholar 

  19. 19.

    Manna, S., Brennecka, G. L., Stevanović, V. & Ciobanu, C. V. Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN. J. Appl. Phys. 122, 105101 (2017).

    Article  Google Scholar 

  20. 20.

    McCall, W. R., Kim, K., Heath, C., La Pierre, G. & Sirbuly, D. J. Piezoelectric nanoparticle-polymer composite foams. ACS Appl. Mater. Inter. 6, 19504–19509 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Smay, J. E., Tuttle, B. & III, J. C. Piezoelectric and Acoustic Materials for Transducer Applications 305–318 (Springer, Boston, 2008).

  22. 22.

    Challagulla, K. S. & Venkatesh, T. A. Electromechanical response of piezoelectric foams. Acta Mater. 60, 2111–2127 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Bauer, J. et al. Nanolattices: An emerging class of mechanical metamaterials. Adv. Mater. 29, 1701850 (2017).

    Article  Google Scholar 

  25. 25.

    Hashimoto, K. Y. & Yamaguchi, M. Elastic, piezoelectric and dielectric properties of composite materials. IEEE 1986 Ultras. Symp. 2, 697–702 (1986).

    Article  Google Scholar 

  26. 26.

    Glushanin, S., Topolov, V. Y. & Krivoruchko, A. V. Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater. Chem. Phys. 97, 357–364 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Huang, J. H. & Kuo, W. S. Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    Bowen, C. R. & Topolov, V. Y. Electromechanical Properties In Composites Based On Ferroelectrics 1–202 (Springer, London, 2009).

  29. 29.

    Nix, E. L. & Ward, I. M. The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride. Ferroelectrics 67, 137–141 (1986).

    CAS  Article  Google Scholar 

  30. 30.

    Wang, H., Zhang, Q. M., Cross, L. E. & Sykes, A. O. Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene). J. Appl. Phys. 74, 3394–3398 (1993).

    CAS  Article  Google Scholar 

  31. 31.

    Deshpande, V. S., Ashby, M. F. & Fleck, N. A. Foam topology bending versus stretching dominated architectures. Acta Mater. 49, 1035–1040 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    Cui, H. C., Hensleigh, R., Chen, H. S. & Zheng, X. Y. Additive manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials. J. Mater. Res. 33, 360–371 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Kim, K. et al. 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 8, 9799–9806 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Singhal, N., Sharma, M. & Mangal, S. K. Optimal placement of piezoelectric patches over a smart structure. Integrated Ferroelectrics 183, 60–90 (2017).

    Article  Google Scholar 

  35. 35.

    Annamdas, V. G. M. & Soh, C. K. Influence of loading on the near field based passive metamaterial in structural health monitoring. Strut. Health Monit. 1, 633–640 (2015).

    Google Scholar 

  36. 36.

    He, X. M. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Eliades, S. J. & Wang, X. Q. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453, 1102–1106 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    Wu, W. Z., Wen, X. N. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Liu, W. et al. Piezoelectric and mechanical properties of CaO reinforced porous PZT ceramics with one-dimensional pore channels. Ceramics Int. 43, 2063–2068 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Bowen, C. R., Perry, A., Lewis, A. C. F. & Kara, H. Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit. J. Eur. Ceram. Soc. 24, 541–545 (2004).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, J. X. et al. Microstructure, electrical and mechanical properties of MgO nanoparticles—reinforced porous PZT 95/5 ferroelectric ceramics. Ceramics Int. 39, 3915–3919 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Pu, J. A., Yan, X. J., Jiang, Y. D., Chang, C. E. & Lin, L. W. Piezoelectric actuation of direct-write electrospun fibers. Sensors Actuators A 164, 131–136 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    He, X. J. & Yao, K. Crystallization mechanism and piezoelectric properties of solution-derived ferroelectric poly(vinylidene fluoride) thin films. Appl. Phys. Lett. 89, 112909 (2006).

    Article  Google Scholar 

  44. 44.

    Babu, I. & de With, G. Highly flexible piezoelectric 0–3 PZT-PDMS composites with high filler content. Composites Sci. Technol. 91, 91–97 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Fang, L. C., Li, J., Zhu, Z. Y., Orrego, S. & Kang, S. H. Piezoelectric polymer thin films with architected cuts. J. Mater. Res. 33, 330–342 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Wan, Hu,J. & Park, T. Continuum models for the plastic deformation of octet-truss lattice materials under multiaxial loading. J. Eng. Mater. Technol. 135, 021004 (2013).

    Article  Google Scholar 

  47. 47.

    Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Netfabb, Netfabb Ultimate 2019 (Autodesk, 2019).

  49. 49.

    Liu, L., Kamm, P., Garcia-Moreno, F., Banhart, J. & Pasini, D. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids. 107, 160–184 (2017).

    Article  Google Scholar 

  50. 50.

    Abaqus, Abaqus 6.14 Documentation (Dassault Systèmes, 2014).

  51. 51.

    Kar-Gupta, R. & Venkatesh, T. A. Electromechanical response of piezoelectric composites: effects of geometric connectivity and grain size. Acta Mater. 56, 3810–3823 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the ICTAS Junior Faculty Award, NSF CMMI 1727492, the Air Force Office of Scientific Research (FA9550-18-1-0299) and the Office of Naval Research (N00014-18-1-2553) for supporting this work. D.M. and S.P. acknowledge the financial support from NSF through award IIP-1832179. P.M. and M.G.K. are thankful for the support from Air Force Office of Scientific Research through grant FA9550-18-1-0233. We thank E. Ventrella, R. Mondschein and Dr. T. Long for help with collecting PZT particle diameter data, A. Wei, K. Jung, H. Chen, and Z. Xu for assitance with analysis and fabrication.

Author information

Affiliations

Authors

Contributions

X.Z. conceived and designed the research. R.H. synthesized the functionalized piezoelectric materials and functionalization measurement. H.C. fabricated samples, performed testing and data analysis. D.Y. and H.C. designed the models and performed the analytical and numerical calculations. H.C., R.H. and X.Z. developed the materials and fabrication methods. D.Y., H.C. and X.Z. developed the method for manipulating anisotropy. D.M., P.K., M.G.K. and S.P. developed the poling method and contributed to the testing of the piezoelectric properties of the 3D metamaterials. H.C., R.H., D.Y. and X.Z. wrote the manuscript with input from all authors. All authors participated in drafting the manuscript, discussion and interpretation of the data.

Corresponding author

Correspondence to Xiaoyu (Rayne) Zheng.

Ethics declarations

Competing interests

The design and material fabrication methods have been submitted for pending US patents.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–14, Supplementary Video Captions 1–5, Supplementary References 1–37, Supplementary Figures 1–24, Supplementary Tables 1–5.

Supplementary Video 1

Flexible metamaterial for energy conversion: hand tapping induced voltage response of the N = 12 flexible piezoelectric metamaterial conformally attached onto a curved surface.

Supplementary Video 2

Flexible 3D ring-like piezo-sensor: a ring-like sensor was prepared and tested to show the signal generated during the folding and unfolding process of human figures.

Supplementary Video 3

Directional voltage response: real-time voltage outputs of piezoelectric metamaterials comprising N = 5 node unit with θθ = 75°, 90° and 120° under impact coming from 1, 2 and 3 directions.

Supplementary Video 4

Drop-weight impact absorption and self-sensing: drop-weight impact test on the piezoelectric metamaterial comprised of N = 12 node units.

Supplementary Video 5

Directionality sensing: real-time voltage output of the piezoelectric infrastructure comprised of stacked architecture under impact coming from 1, 2 and 3 directions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Hensleigh, R., Yao, D. et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Mater 18, 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing