Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites

An Author Correction to this article was published on 14 February 2019

This article has been updated


Hybrid organic–inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dynamic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency (50 cm−1) optical phonons involving motion in the lead iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight into the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Impulsive coherent vibrational dynamics of (PEA)2PbI4.
Fig. 2: Integrated resonant impulsive stimulated Raman spectrum of (PEA)2PbI4 and (NBT)2PbI4 at 5 K and associated phonon modes.
Fig. 3: Pump wavelength dependence of the resonant impulsive stimulated Raman spectra of (PEA)2PbI4 at 5 K.
Fig. 4: Consequences of the wavepacket dynamics in (PEA)2PbI4 at 5 K.

Data availability

The experimental data and analysis material that support the findings of this study are available in the Scholarly Materials And Research @ Georgia Tech repository (SMARTech),

Change history

  • 14 February 2019

    In the version of this Article originally published, the units of the Fig. 3a x axis were incorrectly given as meV. They should have been eV. This has now been corrected in all versions of the Article.


  1. 1.

    Ishihara, T., Takahashi, J. & Goto, T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 69, 933–936 (1989).

    CAS  Article  Google Scholar 

  2. 2.

    Even, J., Pedesseau, L. & Katan, C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem 15, 3733–3741 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Even, J. et al. Solid-state physics perspective on hybrid perovskite semiconductors. J. Phys. Chem. C 119, 10161–10177 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Blancon, J.-C. et al. Scaling law for excitons in 2d perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Article  Google Scholar 

  6. 6.

    Neutzner, S. et al. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2, 064605 (2018).

    Article  Google Scholar 

  7. 7.

    Yaffe, O. et al. Excitons in ultrathin organic–inorganic perovskite crystals. Phys. Rev. B 92, 045414 (2015).

    Article  Google Scholar 

  8. 8.

    Srimath Kandada, A. R. & Petrozza, A. Photophysics of hybrid lead halide perovskites: The role of microstructure. Acc. Chem. Res. 49, 536–544 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  Google Scholar 

  10. 10.

    Straus, D. B. & Kagan, C. R. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties. J. Phys. Chem. Lett. 9, 1434–1447 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Thouin, F. et al. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Phys. Rev. Mater. 2, 034001 (2018).

    Article  Google Scholar 

  12. 12.

    Kondo, T., Azuma, T., Yuasa, T. & Ito, R. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 105, 253–255 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    Quan, L. N. et al. Tailoring the energy landscape in quasi-2d halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Booker, E. P. et al. Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites. Adv. Opt. Mater. 6, 1800616 (2018).

    Article  Google Scholar 

  16. 16.

    Senger, R. T. & Bajaj, K. K. Binding energies of excitons in polar quantum well heterostructures. Phys. Rev. B 68, 205314 (2003).

    Article  Google Scholar 

  17. 17.

    Dvorak, M., Wei, S.-H. & Wu, Z. Origin of the variation of exciton binding energy in semiconductors. Phys. Rev. Lett. 110, 016402 (2013).

    Article  Google Scholar 

  18. 18.

    Ishihara, T., Takahashi, J. & Goto, T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B 42, 11099–11107 (1990).

    CAS  Article  Google Scholar 

  19. 19.

    Kataoka, T. et al. Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4. Phys. Rev. B 47, 2010–2018 (1993).

    CAS  Article  Google Scholar 

  20. 20.

    Tanaka, K. et al. Electronic and excitonic structures of inorganic–organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4. Jpn J. Appl. Phys. 44, 5923–5932 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Shimizu, M., Fujisawa, J. I. & Ishi-Hayase, J. Influence of dielectric confinement on excitonic nonlinearity in inorganic–organic layered semiconductors. Phys. Rev. B 71, 205306 (2005).

    Article  Google Scholar 

  22. 22.

    Ema, K. et al. Huge exchange energy and fine structure of excitons in an organic–inorganic quantum well material. Phys. Rev. B 73, 241310(R) (2006).

  23. 23.

    Goto, T. et al. Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4. Phys. Rev. B 73, 115206 (2006).

    Article  Google Scholar 

  24. 24.

    Kitazawa, N. & Watanabe, Y. Optical properties of natural quantum-well compounds (C6H5-CnH2n-NH3)2PbBr4 (n = 1–4). J. Phys. Chem. Solids 71, 797–802 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Gauthron, K. et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express 18, 5912–5919 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Straus, D. B. et al. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. J. Am. Chem. Soc. 138, 13798–13801 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Quarti, C., Marchal, N. & Beljonne, D. Tuning the optoelectronic properties of 2d hybrid perovskite semiconductors with alkyl chain spacers. J. Phys. Chem. Lett. 9, 3416–3424 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Sood, A., Menendez, J., Cardona, M. & Ploog, K. Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices. Phys. Rev. Lett. 54, 2111–2114 (1985).

    CAS  Article  Google Scholar 

  29. 29.

    Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).

    CAS  Article  Google Scholar 

  30. 30.

    Merlin, R. Generating coherent THz phonons with light pulses. Solid State Commun. 102, 207–220 (1997).

    Article  Google Scholar 

  31. 31.

    Cortecchia, D. et al. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. J. Am. Chem. Soc. 139, 39–42 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Guo, Z., Wu, X., Zhu, T., Zhu, X. & Huang, L. Electron–phonon scattering in atomically thin 2D perovskites. ACS Nano 10, 9992–9998 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Grancini, G. et al. Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites. Nat. Photon. 9, 695–701 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, London, 2008).

    Google Scholar 

  35. 35.

    Ivanovska, T. et al. Vibrational response of methylammonium lead iodide: from cation dynamics to phonon–phonon interactions. ChemSusChem 9, 2994–3004 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Corno, M., Busco, C., Civalleri, B. & Ugliengo, P. Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Phys. Chem. Chem. Phys. 8, 2464–2472 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    Brivio, F. et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015).

    Article  Google Scholar 

  38. 38.

    Quarti, C. et al. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2013).

    Article  Google Scholar 

  39. 39.

    Grisanti, L. et al. Roles of local and nonlocal electron–phonon couplings in triplet exciton diffusion in the anthracene crystal. Phys. Rev. B 88, 035450 (2013).

    Article  Google Scholar 

  40. 40.

    Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    Article  Google Scholar 

  42. 42.

    Leguy, A. M. A. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    La-O-Vorakiat, C. et al. Phonon mode transformation across the orthohombic–tetragonal phase transition in a lead iodide perovskite CH3NH3PbI3: a terahertz time-domain spectroscopy approach. J. Phys. Chem. Lett. 7, 1–6 (2015).

    Article  Google Scholar 

  44. 44.

    De Silvestri, S., Cerullo, G. & Lanzani, G. Coherent Vibrational Dynamics (CRC, Boca Raton, 2008).

  45. 45.

    Lüer, L. et al. Coherent phonon dynamics in semiconducting carbon nanotubes: A quantitative study of electron–phonon coupling. Phys. Rev. Lett. 102, 127401 (2009).

    Article  Google Scholar 

  46. 46.

    Kumar, A. T., Rosca, F., Widom, A. & Champion, P. M. Investigations of amplitude and phase excitation profiles in femtosecond coherence spectroscopy. J. Chem. Phys. 114, 701–724 (2001).

    CAS  Article  Google Scholar 

  47. 47.

    Batignani, G. et al. Probing femtosecond lattice displacement upon photo-carrier generation in lead halide perovskite. Nat. Commun. 9, 1971 (2018).

    Article  Google Scholar 

  48. 48.

    Park, M. et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9, 2525 (2018).

    Article  Google Scholar 

  49. 49.

    Emin, D. Polarons (Cambridge Univ. Press, Cambridge, 2013).

  50. 50.

    Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Neukirch, A. J. et al. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett. 16, 3809–3816 (2016).

    CAS  Article  Google Scholar 

  52. 52.

    Zhai, Y. et al. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article  Google Scholar 

  53. 53.

    Takagi, H., Kunugita, H. & Ema, K. Influence of the image charge effect on excitonic energy structure in organic–inorganic multiple quantum well crystals. Phys. Rev. B 87, 125421 (2013).

    Article  Google Scholar 

  54. 54.

    Zheng, R. & Matsuura, M. Polaronic effects on excitons in quantum wells. Phys. Rev. B 57, 1749–1761 (1998).

    CAS  Article  Google Scholar 

  55. 55.

    Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Calabrese, J. et al. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 113, 2328–2330 (1991).

    CAS  Article  Google Scholar 

  57. 57.

    Dovesi, R. et al. Quantum-mechanical condensed matter simulations with crystal. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1360 (2018).

    Article  Google Scholar 

  58. 58.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  59. 59.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

Download references


A.R.S.K. acknowledges funding from EU Horizon 2020 via a Marie Sklodowska Curie Fellowship (Global) (project no. 705874). F.T. acknowledges support from a doctoral postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada and Fond Québécois pour la Recherche: Nature et Technologies. This work is partially supported by the National Science Foundation (award 1838276). C.S. acknowledges support from the School of Chemistry and Biochemistry and the College of Science of Georgia Institute of Technology. The work at Mons was supported by the Interuniversity Attraction Pole programme of the Belgian Federal Science Policy Office (PAI 6/27) and FNRS-F.R.S. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under grant no. 2.5020.11. D.B. is an FNRS Research Director.

Author information




F.T., D.A.V.-C., I.B. and A.R.S.K. carried out transient absorption measurements. F.T. and D.A.V.-C. performed the analysis of the experimental data. C.Q. performed ab initio calculations. D.C. synthesized the samples. A.P. supervised the sample preparation activity, D.B. supervised the ab initio calculations, and C.S. and A.R.S.K. supervised the ultrafast spectroscopy activity. A.R.S.K. and C.S. conceived the project. All authors contributed to the redaction of the manuscript. F.T. and D.A.V.-C. are to be considered first co-authors, and C.S. and A.R.S.K. corresponding co-authors.

Corresponding authors

Correspondence to Carlos Silva or Ajay Ram Srimath Kandada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5, Supplementary Figures 1–17, Supplementary Tables 1–2, Supplementary References 1–3

NBT Normal Mode N1

Video of normal mode N1 for (NBT)2PbI4 reported in Table I

NBT Normal Mode N2

Video of normal mode N2 for (NBT)2PbI4 reported in Table I

NBT Normal Mode N3

Video of normal mode N3 for (NBT)2PbI4 reported in Table I

NBT Normal Mode N4

Video of normal mode N4 for (NBT)2PbI4 reported in Table I

NBT Normal Mode N5

Video of normal mode N5 for (NBT)2PbI4 reported in Table I

PEA Normal Mode M1

Video of normal mode M1 for (PEA)2PbI4 reported in Table I

PEA Normal Mode M2

Video of normal mode M2 for (PEA)2PbI4 reported in Table I

PEA Normal Mode M3

Video of normal mode M3 for (PEA)2PbI4 reported in Table I

PEA Normal Mode M4

Video of normal mode M4 for (PEA)2PbI4 reported in Table I

PEA Normal Mode M5

Video of normal mode M5 for (PEA)2PbI4 reported in Table I

PEA Normal Mode M6

Video of normal mode M6 for (PEA)2PbI4 reported in Table I

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thouin, F., Valverde-Chávez, D.A., Quarti, C. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing