Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity


Fully effective vaccines for complex infections must elicit a diverse repertoire of antibodies (humoral immunity) and CD8+ T-cell responses (cellular immunity). Here, we present a synthetic glyco-adjuvant named p(Man–TLR7), which, when conjugated to antigens, elicits robust humoral and cellular immunity. p(Man–TLR7) is a random copolymer composed of monomers that either target dendritic cells (DCs) via mannose-binding receptors or activate DCs via Toll-like receptor 7 (TLR7). Protein antigens are conjugated to p(Man–TLR7) via a self-immolative linkage that releases chemically unmodified antigen after endocytosis, thus amplifying antigen presentation to T cells. Studies with ovalbumin (OVA)–p(Man–TLR7) conjugates demonstrate that OVA–p(Man–TLR7) generates greater humoral and cellular immunity than OVA conjugated to polymers lacking either mannose targeting or TLR7 ligand. We show significant enhancement of Plasmodium falciparum-derived circumsporozoite protein (CSP)-specific T-cell responses, expansion in the breadth of the αCSP IgG response and increased inhibition of sporozoite invasion into hepatocytes with CSP–p(Man–TLR7) when compared with CSP formulated with MPLA/QS-21-loaded liposomes—the adjuvant used in the most clinically advanced malaria vaccine. We conclude that our antigen–p(Man–TLR7) platform offers a strategy to enhance the immunogenicity of protein subunit vaccines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: p(Man–TLR7) is a potent activator of DCs and OVA–p(Man–TLR7) is internalized via mannose-binding receptors.
Fig. 2: p(Man–TLR7) targets lymph nodes and increases antigen delivery to multiple DC subsets via mannose-binding receptors.
Fig. 3: OVA–p(Man–TLR7) vaccination avoids systemic inflammation and enhances the magnitude and quality of OVA-specific humoral and T-cell responses.
Fig. 4: OVA–p(Man–TLR7) induces superior T-cell and humoral responses compared with other formulations composed of polymeric TLR7.
Fig. 5: CSP–p(Man–TLR7) induces superior CSP-specific CD4+ and CD8+ T-cell response compared with CSP formulated with leading adjuvants.
Fig. 6: CSP–p(Man–TLR7) increases CSP-specific IgGs that are specific for a wide range of CSP epitopes and reduces malaria parasite burden in human hepatocytes.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Moyle, P. M. & Toth, I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 8, 360–376 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Seder, R. et al. Gaps in knowledge and prospects for research of adjuvanted vaccines. Vaccine 33, B40–B43 (2015).

    Article  Google Scholar 

  3. 3.

    Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10, 243–251 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Lambrecht, B. N., Kool, M., Willart, M. A. & Hammad, H. Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol. 21, 23–29 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Macri, C., Dumont, C., Johnston, A. P. & Mintern, J. D. Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin. Transl. Immunol. 5, e66 (2016).

    Article  Google Scholar 

  6. 6.

    Alexander, J. et al. Development of experimental carbohydrate-conjugate vaccines composed of Streptococcus pneumoniae capsular polysaccharides and the universal helper T-lymphocyte epitope (PADRE®). Vaccine 22, 2362–2367 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    Buonsanti, C. et al. Novel adjuvant Alum-TLR7 significantly potentiates immune response to glycoconjugate vaccines. Sci. Rep. 6, 29063 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Chen, P. et al. Dendritic cell targeted vaccines: recent progresses and challenges. Hum. Vaccines Immunother. 12, 612–622 (2015).

    Article  Google Scholar 

  9. 9.

    Burgdorf, S., Kautz, A., Böhnert, V., Knolle, P. A. & Kurts, C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316, 612–616 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    CAS  Article  Google Scholar 

  11. 11.

    Pardee, A. D. et al. Route of antigen delivery impacts the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. J. Immunother. Cancer 3, 32 (2015).

    Article  Google Scholar 

  12. 12.

    Tsuji, T. et al. Antibody-targeted NY-ESO-1 to mannose receptor or DEC-205 in vitro elicits dual human CD8+ and CD4+ T cell responses with broad antigen specificity. J. Immunol. 186, 1218–1227 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Ekkens, M. J. et al. Th1 and Th2 cells help CD8 T-cell responses. Infect. Immun. 75, 2291–2296 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    Crotty, S. Follicular helper CD4 T cells (T FH). Annu. Rev. Immunol. 29, 621–663 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Declerck, P. J. Biologicals and biosimilars: a review of the science and its implications. Generics Biosimilars Initiat. J. 1, 13–16 (2012).

    Article  Google Scholar 

  16. 16.

    Pugholm, L. H., Petersen, L. R., Søndergaard, E. K. L., Varming, K. & Agger, R. Enhanced humoral responses induced by targeting of antigen to murine dendritic cells. Scand. J. Immunol. 82, 515–522 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Ninkovic, T. & Hanisch, F.-G. O-glycosylated human MUC1 repeats are processed in vitro by immunoproteasomes. J. Immunol. 179, 2380–2388 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Jackson, D. C., Drummer, H. E., Urge, L., Otvos, L. Jr. & Brown, L. E. Glycosylation of a synthetic peptide representing a T-cell determinant of influenza virus hemagglutinin results in loss of recognition by CD4+ T-cell clones. Virology 199, 422–430 (1994).

    CAS  Article  Google Scholar 

  19. 19.

    Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Hartmann, D., Schneider, M. A., Lenz, B. F. & Talmadge, J. E. Toxicity of polyinosinic–polycytidylic acid admixed with poly-L-lysine and solubilized with carboxymethylcellulose in mice. Pathol. Immunopathol. Res. 6, 37–50 (1987).

    CAS  Article  Google Scholar 

  21. 21.

    Singh, S. K. et al. Design of neo-glycoconjugates that target the mannose receptor and enhance TLR-independent cross-presentation and Th1 polarization. Eur. J. Immunol. 41, 916–925 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    He, L.-Z., Weidlick, J., Sisson, C., Marsh, H. C. & Keler, T. Toll-like receptor agonists shape the immune responses to a mannose receptor-targeted cancer vaccine. Cell. Mol. Immunol. 12, 719–728 (2014).

    Article  Google Scholar 

  23. 23.

    Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Campbell, G. R. & Loret, E. P. What does the structure–function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 6, 50 (2009).

    Article  Google Scholar 

  25. 25.

    Webster, T. J. Safety of Nanoparticles (Springer, New York, 2008).

  26. 26.

    Colletier, J.-P., Chaize, B., Winterhalter, M. & Fournier, D. Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2, 9 (2002).

    Article  Google Scholar 

  27. 27.

    Lee, M. H. et al. Liposomal texaphyrin theranostics for metastatic liver cancer. J. Am. Chem. Soc. 138, 16380–16387 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Yang, J., Chen, H., Vlahov, I. R., Cheng, J.-X. & Low, P. S. Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proc. Natl Acad. Sci. USA 103, 13872–13877 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    Cox, M. A., Kahan, S. M. & Zajac, A. J. Anti-viral CD8 T cells and the cytokines that they love. Virology 435, 157–169 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    Rosales, C., Lowell, C. A., Schnoor, M. & Uribe-Querol, E. Neutrophils: their role in innate and adaptive immunity 2017. J. Immunol. Res. 2017, 9748345–2 (2017).

    Article  Google Scholar 

  33. 33.

    Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    CAS  Article  Google Scholar 

  34. 34.

    Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 8, 247–258 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    McHeyzer-Williams, L. J., Milpied, P. J., Okitsu, S. L. & McHeyzer-Williams, M. G. Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat. Immunol. 16, 296–305 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Lynn, G. M. et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 33, 1201–1210 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Hoffman, S. L., Vekemans, J., Richie, T. L. & Duffy, P. E. The march toward malaria vaccines. Am. J. Prev. Med. 49, S319–S333 (2015).

    Article  Google Scholar 

  38. 38.

    Mosquirix; Common Name: Plasmodium falciparum and Hepatitis B Vaccine (Recombinant, Adjuvanted) 1–175 (CHMP, 2015).

  39. 39.

    Cohen, J., Nussenzweig, V., Vekemans, J. & Leach, A. From the circumsporozoite protein to the RTS,S/AS candidate vaccine. Hum. Vaccin. 6, 90–96 (2014).

    Article  Google Scholar 

  40. 40.

    Kester, K. E. et al. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J. Infect. Dis. 200, 337–346 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    Coccia, M. et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. NPJ Vaccines 2, 95 (2017).

    Article  Google Scholar 

  42. 42.

    Tewari, K. et al. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in non human primates. Vaccine 28, 7256–7266 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Dockrell, D. H. Imiquimod and resiquimod as novel immunomodulators. J. Antimicrob. Chemother. 48, 751–755 (2001).

    CAS  Article  Google Scholar 

  44. 44.

    Wiley, S. R. et al. Targeting TLRs expands the antibody repertoire in response to a malaria vaccine. Sci. Transl. Med. 3, 93ra69–93ra69 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Plassmeyer, M. L. et al. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J. Biol. Chem. 284, 26951–26963 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Bongfen, S. E. et al. The N-terminal domain of Plasmodium falciparum circumsporozoite protein represents a target of protective immunity. Vaccine 27, 328–335 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    Estey, T., Kang, J., Schwendeman, S. P. & Carpenter, J. F. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J. Pharm. Sci. 95, 1626–1639 (2006).

    CAS  Article  Google Scholar 

  48. 48.

    Moad, G. RAFT polymerization to form stimuli-responsive polymers. Polym. Chem. 8, 177–219 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007).

    CAS  Article  Google Scholar 

  50. 50.

    Hirosue, S., Kourtis, I. C., van der Vlies, A. J., Hubbell, J. A. & Swartz, M. A. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: cross-presentation and T cell activation. Vaccine 28, 7897–7906 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    Silvie, O. et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat. Med. 9, 93–96 (2003).

    CAS  Article  Google Scholar 

  52. 52.

    Rénia, L. et al. A malaria heat-shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell-mediated cytotoxic mechanisms by nonparenchymal liver cells. Eur. J. Immunol. 20, 1445–1449 (1990).

    Article  Google Scholar 

Download references


We thank the Flow Cytometry Core Facility of EPFL for technical assistance, and Dr E. Simeoni of EPFL for discussion of the research and guidance on animal work. D.S.W. was supported by a fellowship from the Whitaker Foundation. We would like to thank PATH for donating the CSP used in our studies. This study was supported by the School of Life Sciences, EPFL, and the University of Chicago. This work benefited from equipment and services from the CELIS cell culture core facility (Institut du Cerveau et de la Moelle Epinière, Paris), a platform supported through the ANR grants ANR-10-IAIHU-06 and ANR-11-INBS-0011-NeurATRIS. We are particularly grateful to D. Akbar for his assistance regarding automated fluorescence.

Author information




J.A.H. and M.A.S. oversaw all research; D.S.W. conceptualized materials; D.S.W., M.M.R. and R.W. performed the synthesis; D.S.W., S.H. and J.A.H designed animal studies; D.S.W., S.H., M.A.S.B., L.J., G.D. and X.Q.T. performed animal studies; S.H., L.J., D.S.W. and M.K. designed and carried out in vitro studies; D.M., J.-F.F. and L.B.R. designed hepatic invasion studies; J.-F.F. and L.B.R. carried out hepatic invasion studies; D.S.W., S.H. and J.A.H. wrote the manuscript; all authors proofread the manuscript.

Corresponding author

Correspondence to Jeffrey A. Hubbell.

Ethics declarations

Competing interests

The University of Chicago has filed for patent protection on the p(Man-TLRx) delivery platform, and J.A.H., S.H. and D.S.W. are named as inventors on these patents.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–34, Supplementary Methods, Supplementary References 1–2

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, D.S., Hirosue, S., Raczy, M.M. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nature Mater 18, 175–185 (2019).

Download citation

Further reading