Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shape-based separation of synthetic microparticles


The functional properties of colloidal materials can be tailored by tuning the shape of their constituent particles. Unfortunately, a reliable, general methodology for purifying colloidal materials solely based on shape is still lacking. Here we exploit the single-particle analysis and sorting capabilities of the fluorescence-activated cell sorting (FACS) instrument, a commonly used tool in biomedical research, and demonstrate the ability to separate mixtures of synthetic microparticles based solely on their shape with high purity. We achieve this by simultaneously obtaining four independent optical scattering signals from the FACS instrument to create shape-specific ‘scattering signatures’ that can be used for particle classification and sorting. We demonstrate that these four-dimensional signatures can overcome the confounding effects of particle orientation on shape-based characterization. Using this strategy, robust discrimination of particles differing only slightly in shape and an efficient selection of desired shapes from mixtures comprising particles of diverse sizes and materials is demonstrated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sorting particles by shape using FACS.
Fig. 2: Shape-based sorting of mixtures of microparticles with FACS.
Fig. 3: Optical modelling and simulations of size-, shape- and orientation-dependent scattering.
Fig. 4: High-purity sorting with 4D gates.
Fig. 5: 4D gating enables efficient sorting of diverse mixtures of shapes.

Data availability

Flow cytometry data are available as FCS files in FlowRepository with accession code FR-FCM-ZYR6. All the other data that support the findings of this study are available within the article and its supplementary information files or available from the corresponding authors upon reasonable request.


  1. 1.

    Champion, J. A., Katare, Y. K. & Mitragotri, S. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA 104, 11901–11904 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nat. Mater. 8, 15–23 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Chen, H. H. et al. MR imaging of biodegradable polymeric microparticles: a potential method of monitoring local drug delivery. Magn. Reson. Med. 53, 614–620 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Subramanian, G., Manoharan, V. N., Thorne, J. D. & Pine, D. J. Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials. Adv. Mater. 11, 1261–1265 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    Velikov, K. P., Van Dillen, T., Polman, A. & Van Blaaderen, A. Photonic crystals of shape-anisotropic colloidal particles. Appl. Phys. Lett. 81, 838–840 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Kim, S.-H., Lee, S. Y., Yang, S.-M. & Yi, G.-R. Self-assembled colloidal structures for photonics. NPG Asia Mater. 3, 25–33 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Yang, S.-M., Kim, S.-H., Lim, J.-M. & Yi, G.-R. Synthesis and assembly of structured colloidal particles. J. Mater. Chem. 18, 2177 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Kruglova, O., Demeyer, P.-J., Zhong, K., Zhou, Y. & Clays, K. Wonders of colloidal assembly. Soft Matter 9, 9072 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Phillips, C. L. et al. Digital colloids: reconfigurable clusters as high information density elements. Soft Matter 10, 7468–7479 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Kong, T. et al. Droplet based microfluidic fabrication of designer microparticles for encapsulation applications. Biomicrofluidics 6, 34104 (2012).

    Article  Google Scholar 

  13. 13.

    Dendukuri, D. & Doyle, P. S. The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater. 21, 4071–4086 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Xu, Q. et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5, 1575–1581 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    Min, N. G. et al. Anisotropic microparticles created by phase separation of polymer blends confined in monodisperse emulsion drops. Langmuir 31, 937–943 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. & Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5, 365–369 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Wu, C. Y., Owsley, K. & Di Carlo, D. Rapid software-based design and opticaltransient liquid molding of microparticles. Adv. Mater. 27, 7970–7978 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Bhaskar, S., Pollock, K. M., Yoshida, M. & Lahann, J. Towards designer microparticles: simultaneous control of anisotropy, shape, and size. Small 6, 404–411 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Sansdrap, P. & Moës, A. J. Influence of manufacturing parameters on the size characteristics and the release profiles of nifedipine from poly(DL-lactide-co-glycolide) microspheres. Int. J. Pharm. 98, 157–164 (1993).

    CAS  Article  Google Scholar 

  20. 20.

    Yin, Y. & Xia, Y. Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Adv. Mater. 13, 267–271 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    Campos, E. et al. Designing polymeric microparticles for biomedical and industrial applications. Eur. Polym. J. 49, 2005–2021 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Sharma, V., Park, K. & Srinivasarao, M. Shape separation of gold nanorods using centrifugation. Proc. Natl Acad. Sci. USA 106, 4981–4985 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Akbulut, O. et al. Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett. 12, 4060–4064 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Meloy, T. P. & Durney, T. E. Particle shape chromatography—he sieve cascadograph. Int. J. Miner. Process. 11, 101–113 (1983).

    CAS  Article  Google Scholar 

  25. 25.

    Hanauer, M., Pierrat, S., Zins, I., Lotz, A. & Sönnichsen, C. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett. 7, 2881–2885 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Sugaya, S., Yamada, M. & Seki, M. Observation of nonspherical particle behaviors for continuous shape-based separation using hydrodynamic filtration. Biomicrofluidics 5, 024103 (2011).

    Article  Google Scholar 

  27. 27.

    Ranjan, S., Zeming, K. K., Jureen, R., Fisher, D. & Zhang, Y. DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles. Lab Chip 14, 4250–4262 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Masaeli, M. et al. Continuous inertial focusing and separation of particles by shape. Phys. Rev. X 2, 031017 (2012).

    Google Scholar 

  29. 29.

    Lu, X. & Xuan, X. Elasto-inertial pinched flow fractionation for continuous shape-based particle separation. Anal. Chem. 87, 11523–11530 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Lu, X., Zhu, L., Hua, R. & Xuan, X. Continuous sheath-free separation of particles by shape in viscoelastic fluids. Appl. Phys. Lett. 107, 264102 (2015).

    Article  Google Scholar 

  31. 31.

    Nho, H. W., Yang, N., Song, J., Park, J. S. & Yoon, T. H. Separations of spherical and disc-shaped polystyrene particles and blood components (red blood cells and platelets) using pinched flow fractionation device with a tilted sidewall and vertical focusing channels (t-PFF-v). Sensors Actuators B 249, 131–141 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Latimer, P., Brunsting, A., Pyle, B. E. & Moore, C. Effects of asphericity on single particle scattering. Appl. Opt. 17, 3152–3158 (1978).

    CAS  Article  Google Scholar 

  33. 33.

    Kaye, P. H. Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles. Meas. Sci. Technol. 9, 141–149 (1998).

    CAS  Article  Google Scholar 

  34. 34.

    Jones, A. R. Light scattering for particle characterization. Prog. Energy Combust. Sci. 25, 1–53 (1999).

    Article  Google Scholar 

  35. 35.

    Melamed, M. R., Lindmo, T. & Mendelsohn, M. L. Flow Cytometry and Sorting (Wiley, New York, 1990).

  36. 36.

    Mätzler, C. MATLAB Functions for Mie Scattering and Absorption Research Report 2002-08 (IAP, 2002).

  37. 37.

    Mishchenko, M. I. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026 (2000).

    CAS  Article  Google Scholar 

  38. 38.

    Doornbos, R. M. P. et al. Lissajous-like patterns in scatter plots of calibration beads. Cytometry 16, 236–242 (1994).

    CAS  Article  Google Scholar 

  39. 39.

    Salzman, G. C. Light scatter: detection and usage. Curr. Protoc. Cytom. 9, 1.13.1–1.13.8 (2001).

    Google Scholar 

  40. 40.

    Rotstein, R., Berges, A., Mitragotri, S., Morse, D. E. & Moskovits, M. Angle-dependent light scattering by highly uniform colloidal rod-shaped microparticles: experiment and simulation. J. Polym. Sci. B 54, 1889–1895 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Hoffman, R. A. Pulse width for particle sizing. Curr. Protoc. Cytom. 50, 1.23.1–1.23.17, doi: (2009).

    Article  Google Scholar 

  42. 42.

    Tzur, A., Moore, J. K., Jorgensen, P., Shapiro, H. M. & Kirschner, M. W. Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS ONE 6, e16053 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Sharpless, T. K., Bartholdi, M. & Melamed, M. R. Size and refractive index dependence of simple forward angle scattering measurements in a flow system using sharply-focused illumination. J. Histochem. Cytochem. 25, 845–856 (1977).

    CAS  Article  Google Scholar 

  44. 44.

    Amir, E. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Meehan, S. et al. AutoGate: automating analysis of flow cytometry data. Immunol. Res. 58, 218–223 (2014).

    Article  Google Scholar 

  46. 46.

    Yu, J. S., Pertusi, D. A., Adeniran, A. V., Tyo, K. E. J. & Wren, J. CellSort: a support vector machine tool for optimizing fluorescence-activated cell sorting and reducing experimental effort. Bioinformatics 33, 909–916 (2017).

    CAS  Google Scholar 

  47. 47.

    Rens, W., Welch, G. R. & Johnson, L. A. A novel nozzle for more efficient sperm orientation to improve sorting efficiency of X and Y chromosome-bearing sperm. Cytometry 33, 476–481 (1998).

    CAS  Article  Google Scholar 

  48. 48.

    Stovel, R. T., Sweet, R. G. & Herzenberg, L. A. A means for orienting flat cells in flow systems. Biophys. J. 23, 1–5 (1978).

    CAS  Article  Google Scholar 

  49. 49.

    BD FACSAria III Cell Sorter Technical Specifications (BD, 2010).

  50. 50.

    Jones, S. H., King, M. D. & Ward, A. D. Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads. Phys. Chem. Chem. Phys. 15, 20735 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Velazco-Roa, M. A. & Thennadil, S. N. Estimation of optical constants from multiple-scattered light using approximations for single particle scattering characteristics. Appl. Opt. 46, 8453–8460 (2007).

    CAS  Article  Google Scholar 

  52. 52.

    Leinonen, J. High-level interface to T-matrix scattering calculations: architecture, capabilities and limitations. Opt. Express 22, 1655–1660 (2014).

    Article  Google Scholar 

Download references


We thank D. Wu, C. Gordon, C. Wang, P. Coffey and M. Radeke for helpful discussion and technical flow cytometry support. This work was financially supported by DARPA (N66001-14-2-4055). H.T.S. is a Chan Zuckerberg Biohub investigator. The content of the information does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred.

Author information




P.L.M., D.K., C.H. and H.T.S. conceived the project. P.L.M., A.T.C. and D.K. designed the experiments. T.B. synthesized the microparticles and performed scanning electron microscopy. P.L.M. and A.T.C. performed the FACS. P.L.M. analysed the data, designed the sort gates, wrote the analysis and simulation code, performed scattering simulations and performed optical microscopy and image analysis. P.L.M., H.T.S. and M.E. co-wrote and edited the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Samir Mitragotri or Craig Hawker or H. Tom Soh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion 1–2, Supplementary Figures 1–12, Supplementary Tables 1–2, Supplementary References 1–4

Supplementary Software 1

MATLAB code for simulating the forward scattering (FSC) and side scattering (SSC) intensities of spheres using Mie theory

Supplementary Software 2

Python code for simulating the forward scattering (FSC) and side scattering (SSC) intensities of ellipsoids using the T-matrix method

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mage, P.L., Csordas, A.T., Brown, T. et al. Shape-based separation of synthetic microparticles. Nature Mater 18, 82–89 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing