Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes

Abstract

Metal-induced ordered microporous polymers (MMPs), a class of porous polymer, are synthesized from amine-bearing polymers, small organic linkers and divalent metal ions using a polymer-directed chemical synthesis process. Specifically, small organic linkers first coordinate to metal ions, with the resulting unit cells then self-assembling along the extension of polymer chains to construct three-dimensional frameworks. The MMPs demonstrate good controllability of crystal and framework size, as well as hydrolytic stability. MMP dispersions were coated on a modified polysulfone substrate to fabricate MMP/mPSf membranes with an ultrathin selective layer (below 50 nm) and surface areas of >100 cm2. The MMPs are readily fabricated into defect-free thin selective-layered membranes with high CO2 permeance (3,000 GPU) and stable CO2/N2 selectivity (78) under both humid and dry gas feed conditions, demonstrating promising CO2 membrane separation performance. This synthetic methodology could be extended to other polymers, potentially enabling facile synthesis of membrane materials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Construction of MMP frameworks using the PDCS process.
Fig. 2: Representation of the crystal structures and morphological images of MMPs.
Fig. 3: Pore diameter distribution, thermogravimetry curves, dried gas sorption capacities and humidified gas sorption capacities of the MMPs.
Fig. 4: Membrane optical images, surface SEM images, cross-sectional SEM images and mixed-gas CO2/N2 separation performance of the MMP/mPSf membranes.

Data availability

All the data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Baker, R. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Bernardo, P., Drioli, E. & Golemme, G. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    Rosi, N. L. et al. Hydrogen storage in microporous metal organic frameworks. Science 300, 1127–1129 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    Furukawa, H. et al. Ultra high porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Hayashi, H., Côté, A. P., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. Zeolite aimidazolate frameworks. Nat. Mater. 6, 501–506 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  8. 8.

    Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Choi, M. et al. Amphiphilic organo silane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 5, 718–723 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Hsueh, H. Y., Yao, C. T. & Ho, R. M. Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chem. Soc. Rev. 44, 1974–2018 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Du, N. et al. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10, 372–375 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Guiver, M. D. & Lee, Y. M. Polymer rigidity improves microporous membranes. Science 339, 284–285 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Li, P. et al. Recent developments in membranes for efficient hydrogen purification. J. Membr. Sci. 495, 130–168 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Yin, Y. & Guiver, M. D. Microporous polymers: ultrapermeable membranes. Nat. Mater. 16, 880–881 (2017).

    CAS  Google Scholar 

  17. 17.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 1137–1147 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Livingston, A. & Baker, R. Membranes from academia to industry. Nat. Mater. 16, 280–282 (2017).

    Article  Google Scholar 

  19. 19.

    Kitao, T., Zhang, Y., Kitagawa, S., Wang, B. & Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C. & Sumby, C. J. Mixed-matrix membranes. Angew. Chem. Int. Ed. 56, 9292–9310 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, Z., Nguyen, H. T. H., Miller, S. A. & Cohen, S. M. PolyMOFs: a class of interconvertible polymer–metal–organic-framework hybrid materials. Angew. Chem. Int. Ed. 54, 6152–6157 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Zhang, Z. et al. Polymer–metal–organic-framework (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J. Am. Chem. Soc. 138, 920–925 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Yuan, S. et al. Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine. J. Membr. Sci. 378, 425–437 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Merkel, T. C., Lin, H., Wei, X. & Baker, R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359, 126–139 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Key R&D Program of China (no. 2017YFB0603400) and the Natural Science Foundation of China (no. 21436009).

Author information

Affiliations

Authors

Contributions

Z.Q., S.Z. and M.S. fabricated the materials and conducted the characterization. Z.W., C.Z. and M.D.G. carried out experimental design. J.W. and S.W. performed data analysis. Z.Q., S.Z., Z.W., C.Z. and M.D.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhi Wang, Chongli Zhong or Michael D. Guiver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Sections 1–8, Supplementary Figures 1–19, Supplementary Tables 1–2, Supplementary References 1–13

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Zhao, S., Sheng, M. et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nature Mater 18, 163–168 (2019). https://doi.org/10.1038/s41563-018-0221-3

Download citation

Further reading

Search

Quick links