Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bio-inspired pneumatic shape-morphing elastomers

Abstract

Shape-morphing structures are at the core of future applications in aeronautics1, minimally invasive surgery2, tissue engineering3 and smart materials4. However, current engineering technologies, based on inhomogeneous actuation across the thickness of slender structures, are intrinsically limited to one-directional bending5. Here, we describe a strategy where mesostructured elastomer plates undergo fast, controllable and complex shape transformations under applied pressure. Similar to pioneering techniques based on soft hydrogel swelling6,7,8,9,10, these pneumatic shape-morphing elastomers, termed here as ‘baromorphs’, are inspired by the morphogenesis of biological structures11,12,13,14,15. Geometric restrictions are overcome by controlling precisely the local growth rate and direction through a specific network of airways embedded inside the rubber plate. We show how arbitrary three-dimensional shapes can be programmed using an analytic theoretical model, propose a direct geometric solution to the inverse problem, and illustrate the versatility of the technique with a collection of configurations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Principle of pressure-actuated baromorph plate.
Fig. 2: Characterization of baromorph expansion and deformation.
Fig. 3: Equilibrium states and dynamical response.
Fig. 4: Collection of 3D shapes obtained by the buckling of baromorphs under pressure.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files and from the corresponding author upon reasonable request.

References

  1. 1.

    Ajaj, R. M., Beaverstock, C. S. & Friswell, M. I. Morphing aircraft: the need for a new design philosophy. Aerospace Sci. Technol. 49, 154–166 (2016).

    Article  Google Scholar 

  2. 2.

    Cianchetti, M. et al. Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The stiff-flop approach. Soft Robotics 1, 122–131 (2014).

    Article  Google Scholar 

  3. 3.

    Gao, B. et al. 4D bioprinting for biomedical applications. Trends Biotechnol. 34, 746–756 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Shepherd, R. F. et al. Multigait soft robot. Proc. Natl Acad. Sci. USA 108, 20400–20403 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Klein, Y., Efrati, E. & Sharon, E. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Kim, J., Hanna, J. A., Byun, M., Santangelo, C. D. & Hayward, R. C. Designing responsive buckled surfaces by halftone gel lithography. Science 335, 1201–1205 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Aharoni, H., Sharon, E. & Kupferman, R. Geometry of thin nematic elastomer sheets. Phys. Rev. Lett. 113, 257801 (2014).

    Article  Google Scholar 

  9. 9.

    Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).

    Article  Google Scholar 

  10. 10.

    Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 416–418 (2016).

    Article  Google Scholar 

  11. 11.

    Dervaux, J. & Ben Amar, M. Morphogenesis of growing soft tissues. Phys. Rev. Lett. 101, 068101 (2008).

    Article  Google Scholar 

  12. 12.

    Rebocho, A. B., Kennaway, J. R., Bangham, J. A. & Coen, E. Formation and shaping of the antirrhinum flower through modulation of the cup boundary gene. Curr. Biol. 27, 2610–2622 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Nath, U., Crawford, B., Carpenter, R. & Coen, E. Genetic control of surface curvature. Science 299, 1404–1407 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    Fratzl, P., Elbaum, R. & Burgert, I. Cellulose fibrils direct plant organ movements. Faraday Discuss. 139, 275–282 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Armon, S., Efrati, E., Kupferman, R. & Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Reyssat, E. & Mahadevan, L. Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6, 951–957 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Pezzulla, M., Smith, G. P., Nardinocchi, P. & Holmes, D. P. Geometry and mechanics of thin growing bilayers. Soft Matter 12, 4435–4442 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Huang, L. et al. Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 29, 1605390 (2017).

    Article  Google Scholar 

  19. 19.

    Gorissen, B. et al. Elastic inflatable actuators for soft robotic applications. Adv. Mater. 29, 1604977 (2017).

    Article  Google Scholar 

  20. 20.

    Pikul, J. H. et al. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358, 210–214 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Timoshenko, S. & Woinowsky-Krieger, S. Theory of Plates and Shells 2nd edn (McGraw-Hill, New York, 1959).

  23. 23.

    Serikawa, K. A. & Mandoli, D. F. An analysis of morphogenesis of the reproductive whorl of Acetabularia acetabulum. Planta 207, 96–104 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    Dias, M. A., Hanna, J. A. & Santangelo, C. D. Programmed buckling by controlled lateral swelling in a thin elastic sheet. Phys. Rev. E 84, 036603 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Efrati, E., Sharon, E. & Kupferman, R. Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57, 762–775 (2009).

    Article  Google Scholar 

  26. 26.

    Mosadegh, B. et al. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 2163–2170 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Dumais, J. & Forterre, Y. ‘Vegetable dynamicks’: the role of water in plant movements. Annu. Rev. Fluid. Mech. 44, 453–478 (2012).

    Article  Google Scholar 

  28. 28.

    Aharoni, H., Xia, Y., Zhang, X., Kamien, R. & Yang, S. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc. Natl Acad. Sci. USA 115, 7206–7211 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Konakovic, M. et al. Beyond developable: computational design and fabrication with auxetic materials. ACM Trans. Graph. 35, 1–11 (2016).

    Article  Google Scholar 

  30. 30.

    van Rees, W. M., Vouga, E. & Mahadevan, L. Growth patterns for shape-shifting elastic bilayers. Proc. Natl Acad. Sci. USA 114, 11597–11602 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Hild, F. & Roux, S. Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain 42, 69–80 (2006).

    Article  Google Scholar 

  32. 32.

    Cobelli, P. J., Maurel, A., Pagneux, V. & Petitjeans, P. Global measurement of water waves by Fourier transform profilometry. Exp. Fluids 46, 1037–1047 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    der Jeught, S. V., Soons, J. A. M. & Dirckx, J. J. J. Real-time microscopic phase-shifting profilometry. Appl. Opt. 54, 4953–4959 (2015).

    Article  Google Scholar 

  34. 34.

    Ghiglia, D. C. & Romero, L. A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A 11, 107–117 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work received support from the Institut Pierre-Gilles de Gennes (Équipement d’excellence, ‘investissements d’avenir’, ANR-10-EQPX-34) and from ANR SMART. The authors thank C. Blanquart for developing the 3D scanning technique and M. Lebihain from the Institut Jean Le Rond d’Alembert for technical support with 3D printing of the moulds.

Author information

Affiliations

Authors

Contributions

E.S. and B.R. developed the baromorph concept. E.S. designed and conducted the experiments. E.S., E.R., J.B and B.R. analysed the data. E.S., J.B. and B.R. developed the theoretical model. All authors participated in editing of the manuscript.

Corresponding author

Correspondence to Benoît Roman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video Legends 1–10, Supplementary Notes, Supplementary Figures 1–9

Supplementary Video 1

Dynamical behaviour of a baromorph under inflation and deflation

Supplementary Video 2

Parallel actuation of three baromorphs with the same design, at different scales

Supplementary Video 3

Bowl-shaped baromorph fitting a spherical cap

Supplementary Video 4

Saddle-shaped baromorph

Supplementary Video 5

Large angle cone with a centred hole

Supplementary Video 6

A helicoid baromorph

Supplementary Video 7

Face programmed with the geometric inverse recipe

Supplementary Video 8

A mask baromorph

Supplementary Video 9

Actuation of a double layer baromorph

Supplementary Video 10

Actuation of an isotropic baromorph

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siéfert, E., Reyssat, E., Bico, J. et al. Bio-inspired pneumatic shape-morphing elastomers. Nature Mater 18, 24–28 (2019). https://doi.org/10.1038/s41563-018-0219-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing