Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures

Abstract

Magnetic skyrmions are topologically protected whirling spin texture. Their nanoscale dimensions, topologically protected stability and solitonic nature, together are promising for future spintronics applications. To translate these compelling features into practical spintronic devices, a key challenge lies in achieving effective control of skyrmion properties, such as size, density and thermodynamic stability. Here, we report the discovery of ferroelectrically tunable skyrmions in ultrathin BaTiO3/SrRuO3 bilayer heterostructures. The ferroelectric proximity effect at the BaTiO3/SrRuO3 heterointerface triggers a sizeable Dzyaloshinskii–Moriya interaction, thus stabilizing robust skyrmions with diameters less than a hundred nanometres. Moreover, by manipulating the ferroelectric polarization of the BaTiO3 layer, we achieve local, switchable and nonvolatile control of both skyrmion density and thermodynamic stability. This ferroelectrically tunable skyrmion system can simultaneously enhance the integratability and addressability of skyrmion-based functional devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ferroelectric proximity effect and the DMI at the BTO/SRO interface.
Fig. 2: Topological Hall effects of BTO/SRO/SrTiO3(001) heterostructures.
Fig. 3: Magnetic force microscopy of magnetic skyrmions in the B20S5 sample.
Fig. 4: FE control of skyrmion properties.
Fig. 5: Scanning transmission electron microscopy results near the BTO/SRO interface.

Similar content being viewed by others

Data availability

All relevant data that support the plots within this paper are available from the corresponding author upon reasonable request.

References

  1. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  2. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  3. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  CAS  Google Scholar 

  4. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  5. Hagemeister, J., Romming, N., Von Bergmann, K., Vedmedenko, E. Y. & Wiesendanger, R. Stability of single skyrmionic bits. Nat. Commun. 6, 8455 (2015).

    Article  CAS  Google Scholar 

  6. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  7. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  8. Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1081 (2013).

    Article  CAS  Google Scholar 

  9. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  CAS  Google Scholar 

  10. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  11. Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotech. 12, 1040–1044 (2017).

    Article  CAS  Google Scholar 

  12. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  13. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  14. Röβler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  CAS  Google Scholar 

  15. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids. 4, 241–255 (1958).

    Article  CAS  Google Scholar 

  16. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  17. Siemens, A., Zhang, Y., Hagemeister, J., Vedmedenko, E. Y. & Wiesendanger, R. Minimal radius of magnetic skyrmions: statics and dynamics. New J. Phys. 18, 045021 (2016).

    Article  CAS  Google Scholar 

  18. Seki, S. et al. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    Article  CAS  Google Scholar 

  19. Kezsmarki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).

    Article  CAS  Google Scholar 

  20. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016).

    Article  CAS  Google Scholar 

  21. Soumyanarayanan, A. et al. Tunable room temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

    Article  CAS  Google Scholar 

  22. Schott, M. et al. The skyrmion switch: Turning magnetic skyrmion bubbles on and off with an electric field. Nano. Lett. 17, 3006–3012 (2017).

    Article  CAS  Google Scholar 

  23. Maccariello, D. et al. Electrical detection of single magnetic skyrmion at room temperature. Nat. Nanotech. 13, 233–237 (2018).

    Article  CAS  Google Scholar 

  24. Ohuchi, Y. et al. Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films. Nat. Commun. 9, 213 (2018).

    Article  CAS  Google Scholar 

  25. Hsu, P. J. et al. Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotech. 12, 123–126 (2017).

    Article  CAS  Google Scholar 

  26. Cheong, S. W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  27. Ruff, E. et al. Multiferroicity and skyrmions carrying electric polarization in GaV4S8. Sci. Adv. 1, e1500916 (2015).

    Article  CAS  Google Scholar 

  28. Chakraverty, S. et al. Multiple helimagnetic phases and topological Hall effect in epitaxial thin films of pristine and Co-doped SrFeO3. Phys. Rev. B 88, 220405(R) (2013).

    Article  CAS  Google Scholar 

  29. Ahadi, K., Galletti, L. & Stemmer, S. Evidence of a topological Hall effect in Eu1−xSmxTiO3. Appl. Phys. Lett. 111, 172403 (2017).

    Article  CAS  Google Scholar 

  30. Matsuno, J. et al. Interface-driven topological Hall effect in SrRuO3−SrIrO3 bilayer. Sci. Adv. 2, e1600304 (2016).

    Article  CAS  Google Scholar 

  31. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  32. Gerra, G., Tagantsev, A. K., Setter, N. & Parlinski, K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3. Phys. Rev. Lett. 96, 107603 (2006).

    Article  CAS  Google Scholar 

  33. Chisholm, M. F., Luo, W., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010).

    Article  CAS  Google Scholar 

  34. Shin, Y. J. et al. Interface control of ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 capacitor and its critical thickness. Adv. Mater. 29, 1602795 (2017).

    Article  CAS  Google Scholar 

  35. Guo, H. et al. Interface-induced multiferroism by design in complex oxide superlattices. Proc. Natl Acad. Sci. 114, E5062–E5069 (2017).

    CAS  Google Scholar 

  36. Mattheiss, L. F. Electronic structure of RuO2, OsO2, and IrO2. Phys. Rev. B 13, 2433–2450 (1976).

    Article  CAS  Google Scholar 

  37. Kwei, G. H., Lawson, A. C., Billinge, S. J. L. & Cheong, S. W. Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368–2377 (1993).

    Article  CAS  Google Scholar 

  38. Wang, L. et al. Electronic-reconstruction-enhanced-tunneling conductance at terrace edges of ultrathin oxide films. Adv. Mater. 29, 1702001 (2017).

    Article  CAS  Google Scholar 

  39. Koster, G. et al. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012).

    Article  CAS  Google Scholar 

  40. Yu, X., Tokunaga, Y., Taguchi, Y. & Tokura, Y. Variation of topology in magnetic bubbles in a colossal magnetoresistive manganite. Adv. Mater. 29, 1603958 (2017).

    Article  CAS  Google Scholar 

  41. Pollard, S. D. et al. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy. Nat. Commun. 8, 14761 (2017).

    Article  Google Scholar 

  42. Yagil, A. et al. Stray field signatures of Néel textured skyrmions in Ir/Fe/Co/Pt multilayer films. Appl. Phys. Lett. 112, 192403 (2018).

    Article  CAS  Google Scholar 

  43. Nakazawa, K., Bibes, M. & Kohno, H. Topological Hall effect from strong to weak coupling. J. Phys. Soc. Japan 87, 033705 (2018).

    Article  Google Scholar 

  44. Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article  CAS  Google Scholar 

  45. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).

    Article  CAS  Google Scholar 

  46. Liu, X., Tsymbal, E. Y. & Rabe, K. M. Polarization-controlled modulation doping of a ferroelectric from first principles. Phys. Rev. B 97, 094107 (2018).

    Article  CAS  Google Scholar 

  47. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006).

    Article  CAS  Google Scholar 

  48. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  50. Xiang, H. J., Kan, E. J., Wei, S. H., Whangbo, M.-H. & Gong, X. G. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B 84, 224429 (2011).

    Article  CAS  Google Scholar 

  51. Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015).

    Article  CAS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  53. Zhou, H. et al. Evolution and control of the phase competition morphology in a manganite film. Nat. Commun. 6, 8980 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q.L., W.M. and Q.F. were supported by the National Key R&D Program of China (grants no. 2017YFA0402903 and no. 2016YFA0401003) and the National Natural Science Foundation of China (grant no. 51627901). J.H.H. was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1701-07. STEM and PPMS measurements were supported by the National Center for Inter-University Research Facilities (NCIRF) at Seoul National University in Korea. All the authors want to acknowledge major support from the Research Center Program of IBS (Institute for Basic Science) in Korea (IBS-R009-D1). We also acknowledge invaluable suggestions and support from S.Y. Park, S.M. Yang, S. H. Chang, C. Kim, J.-G. Park, B.J. Yang, T.H. Kim, W. Wu and Y. Wang.

Author information

Authors and Affiliations

Authors

Contributions

L.W. and T.W.N. conceived the idea and designed the experiments. R.K. performed the first-principles DFT calculations. L.W. and Y.J.S. grew the samples, fabricated the Hall bar devices and performed the PFM measurements. Y.K. and M.Y.K. performed the STEM measurements. Q.F., H.Z., W.M. and Q.L. performed the MFM measurements. S.D.P., K.H.L. and H.Y. performed the numerical simulations on skyrmion stability. L.W. and T.W.N. analysed the results and wrote the manuscript. All authors participated in the discussions during manuscript preparation.

Corresponding authors

Correspondence to Lingfei Wang, Qingyou Lu or Tae Won Noh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10, Supplementary Figures 1–26, Supplementary Notes 1–2, Supplementary References 1–29

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Feng, Q., Kim, Y. et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nature Mater 17, 1087–1094 (2018). https://doi.org/10.1038/s41563-018-0204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0204-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing