Article | Published:

The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers

Nature Materialsvolume 17pages11221127 (2018) | Download Citation

Abstract

Computational screening of materials for solar to fuel conversion technologies has mostly focused on bulk properties, thus neglecting the structure and chemistry of surfaces and interfaces with water. We report a finite temperature study of WO3, a promising anode for photoelectrochemical cells, carried out using first-principles molecular dynamics simulations coupled with many-body perturbation theory. We identified three major factors determining the chemical reactivity of the material interfaced with water: the presence of surface defects, the dynamics of excess charge at the surface, and finite temperature fluctuations of the surface electronic orbitals. These general descriptors are essential for the understanding and prediction of optimal oxide photoabsorbers for water oxidation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Data related to this publication are organized using the Qresp software and will be available online at http://www.qresp.org/Exploration.html and include a Jupyter notebook used to generate all of the figures reported in the manuscript.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    McKone, J. R., Lewis, N. S. & Gray, H. B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407–414 (2013).

  2. 2.

    Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

  3. 3.

    Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70 (2017).

  4. 4.

    Guo, Z., Ambrosio, F., Chen, W., Gono, P. & Pasquarello, A. Alignment of redox levels at semiconductor-water interfaces. Chem. Mater. 30, 94–111 (2018).

  5. 5.

    Cheng, H. & Selloni, A. Hydroxide ions at the water/anatase TiO2 (101) interface: Structure and electronic states from first principles molecular dynamics. Langmuir 26, 11518–11525 (2010).

  6. 6.

    Toroker, M. C. et al. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys. Chem. Chem. Phys. 13, 16644–16654 (2011).

  7. 7.

    Cheng, J. & Sprik, M. Alignment of electronic energy levels at electrochemical interfaces. Phys. Chem. Chem. Phys. 14, 11245–11267 (2012).

  8. 8.

    Stevanović, V., Lany, S., Ginley, D. S., Tumas, W. & Zunger, A. Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. Phys. Chem. Chem. Phys. 16, 3706–3714 (2014).

  9. 9.

    Kharche, N., Muckerman, J. T. & Hybertsen, M. S. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces. Phys. Rev. Lett. 113, 176802 (2014).

  10. 10.

    Ping, Y., Sundararaman, R. & Goddard, W. A. III Solvation effects on the band edge positions of photocatalysts from first principles. Phys. Chem. Chem. Phys. 17, 30499–30509 (2015).

  11. 11.

    Pham, T. A., Lee, D., Schwegler, E. & Galli, G. Interfacial effects on the band edges of functionalized Si surfaces in liquid water. J. Am. Chem. Soc. 136, 17071–17077 (2014).

  12. 12.

    Pham, T. A., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16, 401–408 (2017).

  13. 13.

    Spurgeon, J. M., Velazquez, J. M. & McDowell, M. T. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Phys. Chem. Chem. Phys. 16, 3623–3631 (2014).

  14. 14.

    Ping, Y., Goddard, W. A. III & Galli, G. A. Energetics and solvation effects at the photoanode/catalyst interface: ohmic contact versus Schottky barrier. J. Am. Chem. Soc. 137, 5264–5267 (2015).

  15. 15.

    Mi, Q. et al. Thermally stable N2-intercalated WO3 photoanodes for water oxidation. J. Am. Chem. Soc. 134, 18318–18324 (2012).

  16. 16.

    Jones, F. H. et al. An STM study of surface structures on WO3 (001). Surf. Sci. 359, 107–121 (1996).

  17. 17.

    Kalanur, S. S., Duy, L. T. and Seo, H. Recent progress in photoelectrochemical water splitting activity of WO3 photoanodes. Top. Catal. 1–34 (2018).

  18. 18.

    Wang, W., Janotti, A. & Van de Walle, C. G. Role of oxygen vacancies in crystalline WO3. J. Mater. Chem. C 4, 6641–6648 (2016).

  19. 19.

    Gerosa, M., Di Valentin, C., Onida, G., Bottani, C. E. & Pacchioni, G. Anisotropic effects of oxygen vacancies on electrochromic properties and conductivity of γ-monoclinic WO3. J. Phys. Chem. C 120, 11716–11726 (2016).

  20. 20.

    Jin, H. et al. Structural and electronic properties of tungsten trioxides: from cluster to solid surface. Theor. Chem. Acc. 130, 103–114 (2011).

  21. 21.

    Albanese, E., Di Valentin, C. & Pacchioni, G. H2O adsorption on WO3 and WO3−x(001) surfaces. ACS Appl. Mater. Interfaces 9, 23212–23221 (2017).

  22. 22.

    Levy, M. & Pagnier, T. Ab initio DFT computation of SnO2 and WO3 slabs and gas–surface interactions. Sens. Actuators B 126, 204–208 (2007).

  23. 23.

    Wang, F., Di Valentin, C. & Pacchioni, G. DFT study of hydrogen adsorption on the monoclinic WO3 (001) surface. J. Phys. Chem. C 116, 10672–10679 (2012).

  24. 24.

    Lambert-Mauriat, C., Oison, V., Saadi, L. & Aguir, K. Ab initio study of oxygen point defects on tungsten trioxide surface. Surf. Sci. 606, 40–45 (2012).

  25. 25.

    Skone, J. H., Govoni, M. & Galli, G. Self-consistent hybrid functional for condensed systems. Phys. Rev. B 89, 195112 (2014).

  26. 26.

    Chen, C., Avila, J., Frantzeskakis, E., Levy, A. & Asensio, M. C. Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface. Nat. Commun. 6, 8585 (2015).

  27. 27.

    McKenna, K. P., Wolf, M. J., Shluger, A. L., Lany, S. & Zunger, A. Two-dimensional polaronic behavior in the binary oxides m-HfO2 and m-ZrO2. Phys. Rev. Lett. 108, 116403 (2012).

  28. 28.

    Di Valentin, C., Pacchioni, G. & Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) surfaces. Phys. Rev. Lett. 97, 166803 (2006).

  29. 29.

    Salje, E. K. H. Polarons and bipolarons in tungsten oxide, WO3−x. Eur. J. Solid State Inorg. Chem. 31, 805–821 (1994).

  30. 30.

    Schirmer, O. F. & Salje, E. The W5+ polaron in crystalline low temperature WO3 ESR and optical absorption. Solid State Commun. 33, 333–336 (1980).

  31. 31.

    Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

  32. 32.

    Kim, J., Lee, C. W. & Choi, W. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ. Sci. Technol. 44, 6849–6854 (2010).

  33. 33.

    Xiang, Q., Yu, J. & Wong, P. K. Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci. 357, 163–167 (2011).

  34. 34.

    Valentin, C. Di A mechanism for the hole-mediated water photooxidation on TiO2 (101) surfaces. J. Phys. Condens. Matter 28, 074002 (2016).

  35. 35.

    Valdes, A., Qu, Z.-W., Kroes, G.-J., Rossmeisl, J. & Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 112, 9872–9879 (2008).

  36. 36.

    Liao, P., Keith, J. A. & Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 134, 13296–13309 (2012).

  37. 37.

    Kröger, M. et al. Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl. Phys. Lett. 95, 123301 (2009).

  38. 38.

    Meyer, J. et al. Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism. Appl. Phys. Lett. 96, 193302 (2010).

  39. 39.

    Ping, Y. & Galli, G. Optimizing the band edges of tungsten trioxide for water oxidation: A first-principles study. J. Phys. Chem. C 118, 6019–6028 (2014).

  40. 40.

    Gerosa, M. et al. Electronic structure and phase stability of oxide semiconductors: Performance of dielectric-dependent hybrid functional DFT, benchmarked against GW band structure calculations and experiments. Phys. Rev. B 91, 155201 (2015).

  41. 41.

    Johansson, M. B. et al. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations. J. Phys. Condens. Matter 25, 205502 (2013).

  42. 42.

    Ping, Y., Rocca, D. & Galli, G. Optical properties of tungsten trioxide from first-principles calculations. Phys. Rev. B 87, 165203 (2013).

  43. 43.

    Johansson, M. B., Kristiansen, P. T., Duda, L., Niklasson, G. A. & Österlund, L. Band gap states in nanocrystalline WO3 thin films studied by soft x-ray spectroscopy and optical spectrophotometry. J. Phys. Condens. Matter 28, 475802 (2016).

  44. 44.

    Valerini, D. et al. Sputtered WO3 films for water splitting applications. Mater. Sci. Semicond. Process. 42, 150–154 (2016).

  45. 45.

    Hong, S. J., Lee, S., Jang, J. S. & Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781–1787 (2011).

  46. 46.

    Seabold, J. A. & Choi, K.-S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011).

  47. 47.

    Anik, M. & Cansizoglu, T. Dissolution kinetics of WO3 in acidic solutions. J. Appl. Electrochem. 36, 603–608 (2006).

  48. 48.

    Yourey, J. E. & Bartlett, B. M. Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J. Mater. Chem. 21, 7651–7660 (2011).

  49. 49.

    Shpyrko, O. G. X-ray photon correlation spectroscopy. J. Synchrotron Rad. 21, 1057–1064 (2014).

  50. 50.

    Wheeler, D. A., Wang, G., Ling, Y., Li, Y. & Zhang, J. Z. Nanostructured hematite:synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5, 6682–6702 (2012).

  51. 51.

    Gygi, F. Architecture of Qbox: A scalable first-principles molecular dynamics code. IBM J. Res. Dev. 52, 137–144 (2008).

  52. 52.

    Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

  53. 53.

    Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

  54. 54.

    Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comp. Phys. Commun. 196, 36–44 (2015).

  55. 55.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  56. 56.

    Gygi, F. & Duchemin, I. Efficient computation of Hartree–Fock exchange using recursive subspace bisection. J. Chem. Theory Comput. 9, 582–587 (2012).

  57. 57.

    Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

  58. 58.

    Govoni, M. & Galli, G. Large scale GW calculations. J. Chem. Theory Comput. 11, 2680–2696 (2015).

  59. 59.

    Wilson, H. F., Gygi, F. & Galli, G. Efficient iterative method for calculations of dielectric matrices. Phys. Rev. B 78, 113303 (2008).

  60. 60.

    Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 59, 12301 (1999).

Download references

Acknowledgements

This work was supported by the NSF-CCI grant CHE-1305124, using codes developed within the Midwest Integrated Center for Computational Materials (MICCoM) as part of the Computational Materials Sciences Program funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. We thank Z.-X. Shen, T. Cuk, T. Lian and Y. Ping for numerous discussions.

Author information

Affiliations

  1. Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois, USA

    • Matteo Gerosa
    • , Marco Govoni
    •  & Giulia Galli
  2. Department of Computer Science, University of California, Davis, Davis, California, USA

    • Francois Gygi
  3. Argonne National Laboratory, Argonne, IL, USA

    • Marco Govoni
    •  & Giulia Galli
  4. Department of Chemistry, The University of Chicago, Chicago, IL, USA

    • Giulia Galli

Authors

  1. Search for Matteo Gerosa in:

  2. Search for Francois Gygi in:

  3. Search for Marco Govoni in:

  4. Search for Giulia Galli in:

Contributions

Matteo G. and G.G. conceived and designed the calculations. Matteo G. performed the calculations, with numerous discussions with F.G. and Marco G. The manuscript was written primarily by Matteo G. and G.G. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Giulia Galli.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41563-018-0192-4