Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatial confinement downsizes the inflammatory response of macrophages

Abstract

Macrophages respond to chemical/metabolic and physical stimuli, but their effects cannot be readily decoupled in vivo during pro-inflammatory activation. Here, we show that preventing macrophage spreading by spatial confinement, as imposed by micropatterning, microporous substrates or cell crowding, suppresses late lipopolysaccharide (LPS)-activated transcriptional programs (biomarkers IL-6, CXCL9, IL-1β, and iNOS) by mechanomodulating chromatin compaction and epigenetic alterations (HDAC3 levels and H3K36-dimethylation). Mechanistically, confinement reduces actin polymerization, thereby lowers the LPS-stimulated nuclear translocation of MRTF-A. This lowers the activity of the MRTF-A–SRF complex and subsequently downregulates the inflammatory response, as confirmed by chromatin immunoprecipitation coupled with quantitative PCR and RNA sequencing analysis. Confinement thus downregulates pro-inflammatory cytokine secretion and, well before any activation processes, the phagocytic potential of macrophages. Contrarily, early events, including activation of the LPS receptor TLR4, and downstream NF-κB and IRF3 signalling and hence the expression of early LPS-responsive genes were marginally affected by confinement. These findings have broad implications in the context of mechanobiology, inflammation and immunology, as well as in tissue engineering and regenerative medicine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Confinement controls the biphasic regulation of M1 transcriptional programs via HDAC3.
Fig. 2: Confinement downregulates LPS-induced actin polymerization, which tames down the expression of late-responsive genes.
Fig. 3: Confinement reduces MRTF-A nuclear translocation, which downregulates late M1 transcriptional programs.
Fig. 4: Cell crowding recapitulates confinement-induced downregulation of M1 activation.
Fig. 5: Macrophage confinement downregulates bacterial phagocytosis and secreted cytokine levels.
Fig. 6: Schematic overview of how the spatial confinement of pro-inflammatory macrophages downregulates their late, but not early transcriptional programs, and thus their pro-inflammatory functional outputs.

Data availability

Microarray data for HDAC3-KO BMDMs were obtained from ref. 32 and the GEO accession no. is GSE33162. RNA–seq data for Control untreated BMDMs, LPS-treated BMDMs and SRF-KO-LPS-treated BMDMs have been deposited in GEO. The accession codes are GSM3373977–GSM3373979, GSM3373980–GSM3373982 and GSM3373983–GSM3373985 for Control untreated BMDMs, LPS-treated BMDMs and SRF-KO-LPS-treated BMDMs, respectively. The remaining data supporting the findings of this study are available within the Article and its Supplementary Information files and from the corresponding authors upon reasonable request.

References

  1. 1.

    Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Glass, C. K. & Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26–33 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Edwards, J. P., Zhang, X., Frauwirth, K. A. & Mosser, D. M. Biochemical and functional characterization of three activated macrophage populations. J. Leukoc. Biol. 80, 1298–1307 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Raza, S. et al. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J. Leukoc. Biol. 96, 167–183 (2014).

    Article  CAS  Google Scholar 

  7. 7.

    Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  CAS  Google Scholar 

  8. 8.

    Lammermann, T. & Germain, R. N. The multiple faces of leukocyte interstitial migration. Semin. Immunopathol. 36, 227–251 (2014).

    Article  Google Scholar 

  9. 9.

    Makino, A. et al. Mechanotransduction in leukocyte activation: a review. Biorheology 44, 221–249 (2007).

    CAS  Google Scholar 

  10. 10.

    Gruber, E., Heyward, C., Cameron, J. & Leifer, C. Toll-like receptor signaling in macrophages is regulated by extracellular substrate stiffness and Rho-associated coiled-coil kinase (ROCK1/2). Int. Immunol. 30, 267–278 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Van Goethem, E., Poincloux, R., Gauffre, F., Maridonneau-Parini, I. & Le Cabec, V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J. Immunol. 184, 1049–1061 (2010).

    Article  CAS  Google Scholar 

  12. 12.

    Mennens, S. F. B., van den Dries, K. & Cambi, A. Role for mechanotransduction in macrophage and dendritic cell immunobiology. Results Probl. Cell Differ. 62, 209–242 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    Downing, T. L. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12, 1154–1162 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733–736 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    McWhorter, F. Y., Davis, C. T. & Liu, W. F. Physical and mechanical regulation of macrophage phenotype and function. Cell. Mol. Life Sci. 72, 1303–1316 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. & Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc. Natl Acad. Sci. USA 110, 17253–17258 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Shibata, K. et al. Effect of the release from mechanical stress on osteoclastogenesis in RAW264.7 cells. Int. J. Mol. Med. 28, 73–79 (2011).

    CAS  Google Scholar 

  22. 22.

    Sussman, E. M., Halpin, M. C., Muster, J., Moon, R. T. & Ratner, B. D. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42, 1508–1516 (2014).

    Article  Google Scholar 

  23. 23.

    Chinetti-Gbaguidi, G. et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARɣ and LXRα pathways. Circ. Res. 108, 985–995 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Stoger, J. L. et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 225, 461–468 (2012).

    Article  CAS  Google Scholar 

  25. 25.

    Ihalainen, T. O. et al. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat. Mater. 14, 1252–1261 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Jain, N., Iyer, K. V., Kumar, A. & Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl Acad. Sci. USA 110, 11349–11354 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Mascetti, G., Carrara, S. & Vergani, L. Relationship between chromatin compactness and dye uptake for in situ chromatin stained with DAPI. Cytometry 44, 113–119 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    Xu, G. et al. The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) production. J. Biol. Chem. 290, 5414–5423 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    Das Gupta, K., Shakespear, M. R., Iyer, A., Fairlie, D. P. & Sweet, M. J. Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin. Transl. Immunol. 5, e62 (2016).

    Article  CAS  Google Scholar 

  31. 31.

    Shakespear, M. R., Halili, M. A., Irvine, K. M., Fairlie, D. P. & Sweet, M. J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 32, 335–343 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Chen, X. et al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc. Natl Acad. Sci. USA 109, E2865–E2874 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Hoeksema, M. A. et al. Targeting macrophage histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol. Med. 6, 1124–1132 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J. & Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274, 10689–10692 (1999).

    CAS  Article  Google Scholar 

  35. 35.

    Dai, Q. & Pruett, S. B. Ethanol suppresses LPS-induced Toll-like receptor 4 clustering, reorganization of the actin cytoskeleton, and associated TNF-α production. Alcohol. Clin. Exp. Res. 30, 1436–1444 (2006).

    CAS  Article  Google Scholar 

  36. 36.

    Reimer, T., Brcic, M., Schweizer, M. & Jungi, T. W. Poly(I:C) and LPS induce distinct IRF3 and NF-κB signaling during type-I IFN and TNF responses in human macrophages. J. Leukoc. Biol. 83, 1249–1257 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12, 711–718 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    Olson, E. N. & Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 11, 353–365 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Selvaraj, A. & Prywes, R. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol. Biol. 5, 13 (2004).

    Article  CAS  Google Scholar 

  40. 40.

    Yu, L. et al. MRTF-A mediates LPS-induced pro-inflammatory transcription by interacting with the COMPASS complex. J. Cell Sci. 127, 4645–4657 (2014).

    Article  CAS  Google Scholar 

  41. 41.

    Xie, L. MKL1/2 and ELK4 co-regulate distinct serum response factor (SRF) transcription programs in macrophages. BMC Genomics 15, 301 (2014).

    Article  CAS  Google Scholar 

  42. 42.

    Sullivan, A. L. et al. Serum response factor utilizes distinct promoter- and enhancer-based mechanisms to regulate cytoskeletal gene expression in macrophages. Mol. Cell. Biol. 31, 861–875 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Kishi, T., Mayanagi, T., Iwabuchi, S., Akasaka, T. & Sobue, K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget 7, 72113–72130 (2016).

    Article  Google Scholar 

  44. 44.

    Han, J., Brown, T. & Beutler, B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J. Exp. Med. 171, 465–475 (1990).

    CAS  Article  Google Scholar 

  45. 45.

    Kruys, V., Marinx, O., Shaw, G., Deschamps, J. & Huez, G. Translational blockade imposed by cytokine-derived UA-rich sequences. Science 245, 852–855 (1989).

    CAS  Article  Google Scholar 

  46. 46.

    MacMicking, J. D. et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650 (1995).

    CAS  Article  Google Scholar 

  47. 47.

    Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 8(Suppl. 2), S3 (2006).

    Article  CAS  Google Scholar 

  48. 48.

    Bartneck, M., Heffels, K. H., Bovi, M., Groll, J. & Zwadlo-Klarwasser, G. The role of substrate morphology for the cytokine release profile of immature human primary macrophages. Mater. Sci. Eng. C 33, 5109–5114 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    Jain, N., Iyer, K. V., Kumar, A. & Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl Acad. Sci. USA 110, 11349–11354 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Kishi, T., Mayanagi, T., Iwabuchi, S., Akasaka, T. & Sobue, K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget 7, 72113–72130 (2016).

    Article  Google Scholar 

  53. 53.

    Fang, F. et al. Myocardin-related transcription factor A mediates OxLDL-induced endothelial injury. Circ. Res. 108, 797–807 (2011).

    CAS  Article  Google Scholar 

  54. 54.

    O’Sullivan, N. C., Pickering, M., Di Giacomo, D., Loscher, J. S. & Murphy, K. J. Mkl transcription cofactors regulate structural plasticity in hippocampal neurons. Cereb. Cortex 20, 1915–1925 (2010).

    Article  Google Scholar 

  55. 55.

    John, G. R. et al. Interleukin-1β induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J. Neurosci. 24, 2837–2845 (2004).

    CAS  Article  Google Scholar 

  56. 56.

    Kamijo, K. et al. Dissecting the role of Rho-mediated signaling in contractile ring formation. Mol. Biol. Cell 17, 43–55 (2006).

    CAS  Article  Google Scholar 

  57. 57.

    Bardai, F. H. & D’Mello, S. R. Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J. Neurosci. 31, 1746–1751 (2011).

    CAS  Article  Google Scholar 

  58. 58.

    de la Vega, L. et al. A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress. Mol. Cell 46, 472–483 (2012).

    Article  CAS  Google Scholar 

  59. 59.

    Montgomery, R. L. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21, 1790–1802 (2007).

    CAS  Article  Google Scholar 

  60. 60.

    Clement, M. et al. CD31 is a key coinhibitory receptor in the development of immunogenic dendritic cells. Proc. Natl Acad. Sci. USA 111, E1101–E1110 (2014).

    CAS  Article  Google Scholar 

  61. 61.

    Yim, N. et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nat. Commun. 7, 12277 (2016).

    CAS  Article  Google Scholar 

  62. 62.

    Avalos Vizcarra, I. et al. How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. Sci. Rep. 6, 18109 (2016).

    CAS  Article  Google Scholar 

  63. 63.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  64. 64.

    Dobin, A. et al. STAR: ultrafast universal RNA–seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Article  Google Scholar 

  67. 67.

    Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Oxenius and the Mice Facility both at ETH Zurich for donating postmortem animals for bone marrow isolation, S. Farmer (Boston University) for providing bone marrow from MRTF-A-KO mice and for helpful discussions, S. Halene (Animal Modeling Core, Yale Cooperative Center of Excellence in Hematology (YCCEH) NIDDK grant no. U54DK106857, Yale University) for providing bone marrow from SRF-KO mice, and K. Sobue and T. Mayanagi (Iwaka Medical University) for providing CA-MRTF-A plasmid. The authors thank G. V. Shivashankar (MBI, NUS, Singapore) for providing HDAC3-overexpressing plasmid, L. Philipp and U. Kutay (ETH Zurich) and M. O. Hottiger (University of Zurich) for helpful discussions on ChIP experiments. In the Vogel group, I. A. Vizcarra is acknowledged for initial help with BMDM culture, J.-Y. Shiu and V. Hosseini for their advice and the manufacturing of 3D-microwells, C. Spencer for technical support, I. Gerber for acquiring the electron microscopy images, L. A. Branco and I. Schoen for critical comments on the manuscript and finally the FIRST and ScopeM facilities at ETH Zurich for access to microfabrication and confocal microscopy. This work was supported by ETH Zurich and by the Swiss National Science Foundation Grant (grant no. CR32I3_156931 to V.V.) and also in part by the Swiss NCCR Molecular Systems Engineering.

Author information

Affiliations

Authors

Contributions

N.J. and V.V. conceived of the project. N.J designed and performed the experiments. N.J. and V.V. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Nikhil Jain or Viola Vogel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video Legends 1–5, Supplementary Figures 1–22, Supplementary Tables 1,2, Supplementary Reference 1

Reporting Summary

Supplementary Data 1

HDAC3-KO microarray analysis

Supplementary Data 2

Gene ontology analysis of control LPS-treated BMDMs versus control untreated BMDMs

Supplementary Data 3

RNA-Seq analysis and gene ontology analysis of SRF-KO LPS-treated BMDMs versus control LPS-treated BMDMs

Supplementary Video 1

Spreading of control BMDMs

Supplementary Video 2

Spreading of LPS-treated BMDMs

Supplementary Video 3

Spreading of IL-4/IL-13-treated BMDMs

Supplementary Video 4

3D reconstruction of unconfined (UC) BMDM treated with LPS for 6 h and stained for nuclei, F-actin, G-actin and MRTF-A

Supplementary Video 5

3D reconstruction of confined (CC) BMDMs treated with LPS for 6 h and stained for nuclei, F-actin, G-actin and MRTF-A

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Vogel, V. Spatial confinement downsizes the inflammatory response of macrophages. Nature Mater 17, 1134–1144 (2018). https://doi.org/10.1038/s41563-018-0190-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing