Abstract

Metal–organic frameworks (MOFs) are hybrid materials based on crystalline coordination polymers that consist of metal ions connected by organic ligands. In addition to the traditional applications in gas storage and separation or catalysis, the long-range crystalline order in MOFs, as well as the tunable coupling between the organic and inorganic constituents, has led to the recent development of electrically conductive MOFs as a new generation of electronic materials. However, to date, the nature of charge transport in the MOFs has remained elusive. Here we demonstrate, using high-frequency terahertz photoconductivity and Hall effect measurements, Drude-type band-like transport in a semiconducting, π–d conjugated porous Fe3(THT)2(NH4)3 (THT, 2,3,6,7,10,11-triphenylenehexathiol) two-dimensional MOF, with a room-temperature mobility up to ~ 220 cm2 V–1 s–1. The temperature-dependent conductivity reveals that this mobility represents a lower limit for the material, as mobility is limited by impurity scattering. These results illustrate the potential for high-mobility semiconducting MOFs as active materials in thin-film optoelectronic devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The experimental and computational data that support the findings of this study are available from the corresponding authors upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

  2. 2.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

  3. 3.

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

  4. 4.

    Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

  5. 5.

    Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010).

  6. 6.

    McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

  7. 7.

    Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nat. Chem. 2, 633–637 (2010).

  8. 8.

    Li, J. R., Sculley, J. & Zhou, H. C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

  9. 9.

    Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

  10. 10.

    Liao, P., Huang, N., Zhang, W., Zhang, J. & Chen, X. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

  11. 11.

    Lee, J. Y. et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

  12. 12.

    Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

  13. 13.

    Zhu, L., Liu, X., Jiang, H. & Sun, L. Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117, 8129–8176 (2017).

  14. 14.

    Talin, A. A. et al. Tunable electrical conductivity in metal–organic framework thin-film devices. Science 343, 66–69 (2014).

  15. 15.

    Sun, L., Campbell, M. G. & Dincǎ, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

  16. 16.

    Stassen, I. et al. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017).

  17. 17.

    Campbell, M. G., Liu, S. F., Swager, T. M. & Dincă, M. Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137, 13780–13783 (2015).

  18. 18.

    Hmadeh, M. et al. New porous crystals of extended metal–catecholates. Chem. Mater. 24, 3511–3513 (2012).

  19. 19.

    Sheberla, D. et al. High electrical conductivity in Ni3 (2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

  20. 20.

    Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

  21. 21.

    Kambe, T. et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013).

  22. 22.

    Kambe, T. et al. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014).

  23. 23.

    Huang, X. et al. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015).

  24. 24.

    Sun, L., Sarah, S., Park, S. S., Dennis Sheberla, D. & Dincă, M. Measuring and reporting electrical conductivity in metal–organic frameworks. J. Am. Chem. Soc. 138, 14772–14782 (2016).

  25. 25.

    Clough, A. J. et al. Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J. Am. Chem. Soc. 139, 10863–10867 (2017).

  26. 26.

    Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

  27. 27.

    Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nat. Mater. 9, 565–571 (2010).

  28. 28.

    Dong, R. et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 12058–12063 (2015).

  29. 29.

    Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent‐organic frameworks. Chemistry Eur. J. 17, 2388–2392 (2011).

  30. 30.

    Dirk, C. W. et al. Metal poly(benzodithiolenes). Macromolecules 19, 266–269 (1986).

  31. 31.

    Sellmann, D., Geck, M. & Moll, M. Transition-metal complexes with sulfur ligands. 62. Hydrogen evolution upon reaction of protons with sulfur-coordinated iron(ii) complexes. Investigation of the H+, H2, and H– interactions with iron 1,2-benzenedithiolate. J. Am. Chem. Soc. 113, 5259–5264 (1991).

  32. 32.

    Roy, N., Sproules, S., Bill, E., Weyhermüller, T. & Wieghardt, K. Molecular and electronic structure of the square planar bis(o-amidobenzenethiolato)iron(iii) anion and its bis(o-quinoxalinedithiolato)iron(iii) analogue. Inorg. Chem. 47, 10911–10920 (2008).

  33. 33.

    Darago, L. E., Aubrey, M. L., Yu, C., Gonzalez, M. I. & Long, J. R. Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal–organic framework. J. Am. Chem. Soc. 137, 15703–15711 (2015).

  34. 34.

    Fonari, A. & Sutton, C. Validation of the effective masses calculated using finite difference method on a five-point stencil for inorganic and organic semiconductors. Preprint at http://arXiv.org/cond-mat.mtrl-sci/1302.4996.

  35. 35.

    Chattopadhyay, D. & Queisser, H. J. Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 53, 745 (1981).

  36. 36.

    Chen, J. H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotech. 3, 206–209 (2008).

  37. 37.

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

  38. 38.

    Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

  39. 39.

    Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

  40. 40.

    Sun, L. et al. Is iron unique in promoting electrical conductivity in MOFs? Chem. Sci. 8, 4450–4457 (2017).

  41. 41.

    Mayadas, F. & Shatzkes, M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382–1389 (1970).

  42. 42.

    Rivnay, J. et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat. Mater. 8, 952–958 (2009).

  43. 43.

    Steinhauser, J., Fay, S., Oliveira, N., Vallat-Sauvain, E. & Ballif, C. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl. Phys. Lett. 90, 142107 (2007).

Download references

Acknowledgements

This work was financially supported by the ERC Grant on 2DMATER, HIPER-G and EU Graphene Flagship, European Science Foundation (ESF), Coordination Networks: Building Blocks for Functional Systems (SPP 1928, COORNET) and the German Science Council. Financial support by the Max Planck Society is also acknowledged. We acknowledge the CFAED (Center for Advancing Electronics Dresden). E.C. acknowledges financial support from the Max Planck Graduate Center and the Regional Government of Comunidad de Madrid under project 2017-T1/AMB-5207. R.D. gratefully appreciates funding from the Alexander von Humboldt-Foundation. H.A. and A.E. are grateful to the Initiative and Networking Fund of the Helmholtz Association of German Research Centers through the International Helmholtz Research School for Nanoelectronic Networks, IHRS NANONET (VH-KO-606). We appreciate LPKF Laser & Electronics for the fabrication of the Hall bar geometry by laser ablation. We acknowledge the Dresden Center for Nanoanalysis (DCN) at TUD and P. Formanek (Leibniz Institute for Polymer Research, IPF, Dresden) for the use of facilities, and we appreciate X. Zhang, T. Zhang, F. Ortmann and K. S. Schellhammer for the helpful discussion. P.P. and T.H. thank ZIH Dresden for providing high-performance computing facilities.

Author information

Author notes

  1. These authors contributed equally: Renhao Dong and Peng Han.

Affiliations

  1. Center for Advancing Electronics Dresden & Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany

    • Renhao Dong
    • , Zhe Zhang
    • , Stefan C. B. Mannsfeld
    • , Thomas Heine
    •  & Xinliang Feng
  2. Max Planck Institute for Polymer Research, Mainz, Germany

    • Peng Han
    • , Marco Ballabio
    • , Melike Karakus
    • , Mischa Bonn
    •  & Enrique Cánovas
  3. Helmholtz-Zentrum Dresden-Rossendorf and Center for Advancing Electronics Dresden, Dresden, Germany

    • Himani Arora
    • , Artur Erbe
    •  & Thomas Heine
  4. Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

    • Chandra Shekhar
    • , Peter Adler
    •  & Claudia Felser
  5. Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, Leipzig University , Leipzig, Germany

    • Petko St. Petkov
    •  & Thomas Heine
  6. University of Sofia, Faculty of Chemistry and Pharmacy , Sofia, Bulgaria

    • Petko St. Petkov
  7. Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain

    • Enrique Cánovas

Authors

  1. Search for Renhao Dong in:

  2. Search for Peng Han in:

  3. Search for Himani Arora in:

  4. Search for Marco Ballabio in:

  5. Search for Melike Karakus in:

  6. Search for Zhe Zhang in:

  7. Search for Chandra Shekhar in:

  8. Search for Peter Adler in:

  9. Search for Petko St. Petkov in:

  10. Search for Artur Erbe in:

  11. Search for Stefan C. B. Mannsfeld in:

  12. Search for Claudia Felser in:

  13. Search for Thomas Heine in:

  14. Search for Mischa Bonn in:

  15. Search for Xinliang Feng in:

  16. Search for Enrique Cánovas in:

Contributions

X.F., R.D., M.Bonn and E.C. conceived and designed the project. R.D. synthesized the THT precursor, prepared the 2D MOFs and conducted the structural, compositional and property characterizations. P.H. and M.K. conducted the THz experiments, P.H., M.Ballabio, M.Bonn and E.C. contributed to the THz data analysis and interpretation. H.A., A.E., R.D. and C.S. fabricated the devices and performed the d.c. conductivity by a two-/four-probe method and Hall effect measurements. Z.Z., R.D. and S.C.B.M. evaluated the d.c. conductivity by the two-probe method at room temperature. P.A. and C.F. contributed the Mössbauer spectroscopy investigations. P.S.P. and T.H. performed the DFT calculations of the 2D MOFs. R.D., X.F., M.Bonn and E.C. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Xinliang Feng or Enrique Cánovas.

Supplementary information

  1. Supplementary information

    Supplementary Figures 1–24, Supplementary Tables 1–4, Supplementary References 1–31

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41563-018-0189-z