Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework

Abstract

Metal–organic frameworks (MOFs) are hybrid materials based on crystalline coordination polymers that consist of metal ions connected by organic ligands. In addition to the traditional applications in gas storage and separation or catalysis, the long-range crystalline order in MOFs, as well as the tunable coupling between the organic and inorganic constituents, has led to the recent development of electrically conductive MOFs as a new generation of electronic materials. However, to date, the nature of charge transport in the MOFs has remained elusive. Here we demonstrate, using high-frequency terahertz photoconductivity and Hall effect measurements, Drude-type band-like transport in a semiconducting, π–d conjugated porous Fe3(THT)2(NH4)3 (THT, 2,3,6,7,10,11-triphenylenehexathiol) two-dimensional MOF, with a room-temperature mobility up to ~ 220 cm2 V–1 s–1. The temperature-dependent conductivity reveals that this mobility represents a lower limit for the material, as mobility is limited by impurity scattering. These results illustrate the potential for high-mobility semiconducting MOFs as active materials in thin-film optoelectronic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Morphology, crystalline structure and band gap of Fe3(THT)2(NH4)3 2D MOFs.
Fig. 2: Room-temperature photoconductivity of Fe3(THT)2(NH4)3 2D MOFs measured by THz spectroscopy.
Fig. 3: Temperature dependence of photoconductivity of Fe3(THT)2(NH4)3 2D MOFs measured by THz spectroscopy and Hall effect d.c. conductivity.

Data availability

The experimental and computational data that support the findings of this study are available from the corresponding authors upon request.

References

  1. 1.

    Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  3. 3.

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nat. Chem. 2, 633–637 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Li, J. R., Sculley, J. & Zhou, H. C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Liao, P., Huang, N., Zhang, W., Zhang, J. & Chen, X. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Lee, J. Y. et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Zhu, L., Liu, X., Jiang, H. & Sun, L. Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117, 8129–8176 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Talin, A. A. et al. Tunable electrical conductivity in metal–organic framework thin-film devices. Science 343, 66–69 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Sun, L., Campbell, M. G. & Dincǎ, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Stassen, I. et al. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Campbell, M. G., Liu, S. F., Swager, T. M. & Dincă, M. Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137, 13780–13783 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Hmadeh, M. et al. New porous crystals of extended metal–catecholates. Chem. Mater. 24, 3511–3513 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Sheberla, D. et al. High electrical conductivity in Ni3 (2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Kambe, T. et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Kambe, T. et al. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Huang, X. et al. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Sun, L., Sarah, S., Park, S. S., Dennis Sheberla, D. & Dincă, M. Measuring and reporting electrical conductivity in metal–organic frameworks. J. Am. Chem. Soc. 138, 14772–14782 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Clough, A. J. et al. Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J. Am. Chem. Soc. 139, 10863–10867 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nat. Mater. 9, 565–571 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Dong, R. et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 12058–12063 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent‐organic frameworks. Chemistry Eur. J. 17, 2388–2392 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Dirk, C. W. et al. Metal poly(benzodithiolenes). Macromolecules 19, 266–269 (1986).

    CAS  Article  Google Scholar 

  31. 31.

    Sellmann, D., Geck, M. & Moll, M. Transition-metal complexes with sulfur ligands. 62. Hydrogen evolution upon reaction of protons with sulfur-coordinated iron(ii) complexes. Investigation of the H+, H2, and H– interactions with iron 1,2-benzenedithiolate. J. Am. Chem. Soc. 113, 5259–5264 (1991).

    CAS  Article  Google Scholar 

  32. 32.

    Roy, N., Sproules, S., Bill, E., Weyhermüller, T. & Wieghardt, K. Molecular and electronic structure of the square planar bis(o-amidobenzenethiolato)iron(iii) anion and its bis(o-quinoxalinedithiolato)iron(iii) analogue. Inorg. Chem. 47, 10911–10920 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Darago, L. E., Aubrey, M. L., Yu, C., Gonzalez, M. I. & Long, J. R. Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal–organic framework. J. Am. Chem. Soc. 137, 15703–15711 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Fonari, A. & Sutton, C. Validation of the effective masses calculated using finite difference method on a five-point stencil for inorganic and organic semiconductors. Preprint at http://arXiv.org/cond-mat.mtrl-sci/1302.4996.

  35. 35.

    Chattopadhyay, D. & Queisser, H. J. Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 53, 745 (1981).

    CAS  Article  Google Scholar 

  36. 36.

    Chen, J. H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotech. 3, 206–209 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    Google Scholar 

  38. 38.

    Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  Google Scholar 

  40. 40.

    Sun, L. et al. Is iron unique in promoting electrical conductivity in MOFs? Chem. Sci. 8, 4450–4457 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Mayadas, F. & Shatzkes, M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382–1389 (1970).

    Article  Google Scholar 

  42. 42.

    Rivnay, J. et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat. Mater. 8, 952–958 (2009).

    CAS  Article  Google Scholar 

  43. 43.

    Steinhauser, J., Fay, S., Oliveira, N., Vallat-Sauvain, E. & Ballif, C. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl. Phys. Lett. 90, 142107 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the ERC Grant on 2DMATER, HIPER-G and EU Graphene Flagship, European Science Foundation (ESF), Coordination Networks: Building Blocks for Functional Systems (SPP 1928, COORNET) and the German Science Council. Financial support by the Max Planck Society is also acknowledged. We acknowledge the CFAED (Center for Advancing Electronics Dresden). E.C. acknowledges financial support from the Max Planck Graduate Center and the Regional Government of Comunidad de Madrid under project 2017-T1/AMB-5207. R.D. gratefully appreciates funding from the Alexander von Humboldt-Foundation. H.A. and A.E. are grateful to the Initiative and Networking Fund of the Helmholtz Association of German Research Centers through the International Helmholtz Research School for Nanoelectronic Networks, IHRS NANONET (VH-KO-606). We appreciate LPKF Laser & Electronics for the fabrication of the Hall bar geometry by laser ablation. We acknowledge the Dresden Center for Nanoanalysis (DCN) at TUD and P. Formanek (Leibniz Institute for Polymer Research, IPF, Dresden) for the use of facilities, and we appreciate X. Zhang, T. Zhang, F. Ortmann and K. S. Schellhammer for the helpful discussion. P.P. and T.H. thank ZIH Dresden for providing high-performance computing facilities.

Author information

Affiliations

Authors

Contributions

X.F., R.D., M.Bonn and E.C. conceived and designed the project. R.D. synthesized the THT precursor, prepared the 2D MOFs and conducted the structural, compositional and property characterizations. P.H. and M.K. conducted the THz experiments, P.H., M.Ballabio, M.Bonn and E.C. contributed to the THz data analysis and interpretation. H.A., A.E., R.D. and C.S. fabricated the devices and performed the d.c. conductivity by a two-/four-probe method and Hall effect measurements. Z.Z., R.D. and S.C.B.M. evaluated the d.c. conductivity by the two-probe method at room temperature. P.A. and C.F. contributed the Mössbauer spectroscopy investigations. P.S.P. and T.H. performed the DFT calculations of the 2D MOFs. R.D., X.F., M.Bonn and E.C. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xinliang Feng or Enrique Cánovas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figures 1–24, Supplementary Tables 1–4, Supplementary References 1–31

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, R., Han, P., Arora, H. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nature Mater 17, 1027–1032 (2018). https://doi.org/10.1038/s41563-018-0189-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing