Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers

Abstract

Two-dimensional (2D) MoS2, which has great potential for optoelectronic and other applications, is thermodynamically stable and hence easily synthesized in its semiconducting 2H phase. In contrast, growth of its metastable 1T and 1T′ phases is hampered by their higher formation energy. Here we use theoretical calculations to design a potassium (K)-assisted chemical vapour deposition method for the phase-selective growth of 1T′ MoS2 monolayers and 1T′/2H heterophase bilayers. This is realized by tuning the concentration of K in the growth products to invert the stability of the 1T′ and 2H phases. The synthesis of 1T′ MoS2 monolayers with high phase purity allows us to characterize their intrinsic optical and electrical properties, revealing a characteristic in-plane anisotropy. This phase-controlled bottom-up synthesis offers a simple and efficient way of manipulating the relevant device structures, and provides a general approach for producing other metastable-phase 2D materials with unique properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics for the phase-controlled synthesis strategy.
Fig. 2: Selective CVD growth of 1T′-phase and 2H-phase MoS2 monolayers.
Fig. 3: Vertically stacked 1T′/2H heterophase bilayers.
Fig. 4: In-plane anisotropic spectroscopic characterizations.
Fig. 5: In-plane anisotropic electrical characterizations.
Fig. 6: Electrochemical performance of CVD-grown 1T′ and 2H MoS2 flakes.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  2. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  3. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  4. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotech. 10, 313–318 (2015).

    Article  CAS  Google Scholar 

  5. Lin, Y. C., Dumcenco, D. O., Huang, Y. S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotech. 9, 391–396 (2014).

    Article  CAS  Google Scholar 

  6. Tan, S. J. et al. Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity. J. Am. Chem. Soc. 139, 2504–2511 (2017).

    Article  CAS  Google Scholar 

  7. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  Google Scholar 

  8. Zhang, R. et al. Superconductivity in potassium-doped metallic polymorphs of MoS2. Nano. Lett. 16, 629–636 (2016).

    Article  Google Scholar 

  9. Yan, S. M. et al. Enhancement of magnetism by structural phase transition in MoS2. Appl. Phys. Lett. 106, 012408 (2015).

    Article  Google Scholar 

  10. Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112, 157601 (2014).

    Article  Google Scholar 

  11. Acerce, M., Akdogan, E. K. & Chhowalla, M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549, 370–373 (2017).

    Article  CAS  Google Scholar 

  12. Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    Article  CAS  Google Scholar 

  13. Yamaguchi, H. et al. Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2. ACS Nano. 9, 840–849 (2015).

    Article  CAS  Google Scholar 

  14. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  15. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  16. Li, M. Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article  CAS  Google Scholar 

  17. Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    Article  CAS  Google Scholar 

  18. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano. Lett. 13, 6222–6227 (2013).

    Article  CAS  Google Scholar 

  19. Yu, Y. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    Article  CAS  Google Scholar 

  20. Duerloo, K. A., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  CAS  Google Scholar 

  21. Wypych, F., Weber, T. & Prins, R. Scanning tunneling microscopic investigation of Kx(H2O)yMoS2. Surf. Sci. 380, 474–478 (1997).

    Article  Google Scholar 

  22. Barreau, N. & Bern’ede, J. C. MoS2 textured films grown on glass substrates through sodium sulfide based compounds. J. Phys. D 35, 1197–1204 (2002).

    Article  CAS  Google Scholar 

  23. Heising, J. & Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999).

    Article  CAS  Google Scholar 

  24. Jiménez Sandoval, S., Yang, D., Frindt, R. F. & Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B 44, 3955–3962 (1991).

    Article  Google Scholar 

  25. Liu, Q. et al. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution. Small 11, 5556–5564 (2015).

    Article  CAS  Google Scholar 

  26. Chang, K. et al. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 28, 10033–10041 (2016).

    Article  CAS  Google Scholar 

  27. Bampoulis, P., Sotthewes, K., Siekman, M. H., Zandvliet, H. J. & Poelsema, B. Graphene visualizes the ion distribution on air-cleaved mica. Sci. Rep. 7, 43451 (2017).

    Article  Google Scholar 

  28. Liu, E. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 6, 6991 (2015).

    Article  CAS  Google Scholar 

  29. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article  CAS  Google Scholar 

  30. Dawson, W. G. & Bullett, D. W. Electronic-structure and crystallography of MoTe2 and WTe2. J. Phys. C 20, 6159–6174 (1987).

    Article  CAS  Google Scholar 

  31. Song, Q. et al. The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci. Rep. 6, 29254 (2016).

    Article  Google Scholar 

  32. Mao, N. et al. Birefringence-directed Raman selection rules in 2D black phosphorus crystals. Small 12, 2627–2633 (2016).

    Article  CAS  Google Scholar 

  33. Kranert, C., Sturm, C., Schmidt-Grund, R. & Grundmann, M. Raman tensor formalism for optically anisotropic crystals. Phys. Rev. Lett. 116, 127401 (2016).

    Article  Google Scholar 

  34. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  35. Wu, J., Mao, N., Xie, L., Xu, H. & Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. 54, 2366–2369 (2015).

    Article  CAS  Google Scholar 

  36. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  Google Scholar 

  37. Zhang, J. et al. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 29, 1701955 (2017).

    Article  Google Scholar 

  38. Tang, Q. & Jiang, D.-e Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 6, 4953–4961 (2016).

    Article  CAS  Google Scholar 

  39. Cordova, A., Blanchard, P., Lancelot, C., Frémy, G. & Lamonier, C. Probing the nature of the active phase of molybdenum-supported catalysts for the direct synthesis of methylmercaptan from syngas and H2S. ACS Catal. 5, 2966–2981 (2015).

    Article  CAS  Google Scholar 

  40. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  41. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  43. Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  44. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745 (2002).

    Article  CAS  Google Scholar 

  45. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  Google Scholar 

  46. Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36 (2015).

    Article  CAS  Google Scholar 

  47. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

L.J. acknowledges the National Natural Science Foundation of China (grant numbers 21573125, 21322303 and 51372134) and the Tsinghua University Initiative Scientific Research Program. L.X. acknowledges the NSFC (grant number 21673058), the Key Research Program of Frontier Sciences of CAS (grant number QYZDB-SSW-SYS031), the Strategic Priority Research Program of Chinese Academy of Sciences (grant number XDB30000000) and the Beijing Nova Program-Joint Project (grant number Z171100001117129). X.J. acknowledges the National Natural Science Foundation of China (grant numbers 11574304 and 11774338) and the Youth Innovation Promotion Association CAS (grant number 2016109). L.G. acknowledges the National Program on Key Basic Research Project (grant number 2014CB921002), The Strategic Priority Research Program of Chinese Academy of Sciences (grant number XDB07030200) and the National Natural Science Foundation of China (grant numbers 51522212, 51421002 and 51672307). P.L. acknowledges the National Natural Science Foundation of China (grant number 61675032), the National Basic Research Program of China (973 Program) under grant number 2014CB643900 and the Open Program of State Key Laboratory of Functional Materials for Informatics. We thank X. Yan for TEM data analysis and X. Ping for HER measurements.

Author information

Authors and Affiliations

Authors

Contributions

L.J. and L.X. cosupervised this project. L.J. and L.L. conceived the ideas. L.L., J.W., L.S., J.Z. and L.X. performed the experiments. L.W., Q.W., S.H., P.L., M.Y. and X.J. carried out the theoretical calculations. X.L. and L.G. performed the STEM characterizations. L.J., L.L., J.W. and L.X. co-wrote the manuscript. All authors read the manuscript and commented on it.

Corresponding authors

Correspondence to Liming Xie or Liying Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher′s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary Tables 1–2, Supplementary References 1–17

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wu, J., Wu, L. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nature Mater 17, 1108–1114 (2018). https://doi.org/10.1038/s41563-018-0187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0187-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing