Coatings super-repellent to ultralow surface tension liquids

Subjects

Abstract

High-performance coatings that durably and fully repel liquids are of interest for fundamental research and practical applications. Such coatings should allow for droplet beading, roll off and bouncing, which is difficult to achieve for ultralow surface tension liquids. Here we report a bottom-up approach to prepare super-repellent coatings using a mixture of fluorosilanes and cyanoacrylate. On application to surfaces, the coatings assemble into thin films of locally multi-re-entrant hierarchical structures with very low surface energies. The resulting materials are super-repellent to solvents, acids and bases, polymer solutions and ultralow surface tension liquids, characterized by ultrahigh liquid contact angles (>150°) and negligible roll-off angles (~0°). Furthermore, the coatings are transparent, durable and demonstrate universal liquid bouncing, tailored responsiveness and anti-freezing properties, and are thus a promising alternative to existing synthetic super-repellent coatings.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Super-repellent transparent PFTS/BCA coatings.
Fig. 2: Near friction-free rolling of droplets on PTFS/BCA coatings.
Fig. 3: Stretch–responsiveness and extrusion of bouncing droplets.
Fig. 4: Super-repellency even to sub-10 mN m−1 liquids.

Data availability

Data supporting the findings of this study are available within the article (and its Supplementary Information) and from the corresponding authors upon reasonable request.

References

  1. 1.

    Li, Y., Quere, D., Lv, C. & Zheng, Q. Monostable superrepellent materials. Proc. Natl Acad. Sci. USA 114, 3387–3392 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Schutzius, T. M. et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527, 82–85 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Yong, J., Chen, F., Yang, Q., Huo, J. & Hou, X. Superoleophobic surfaces. Chem. Soc. Rev. 46, 4168–4217 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Blossey, R. Self-cleaning surfaces—virtual realities. Nat. Mater. 2, 301–306 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    Lu, Y. et al. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347, 1132–1135 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Erbil, H. Y., Demirel, A. L., Avci, Y. & Mert, O. Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    Pan, S., Kota, A. K., Mabry, J. M. & Tuteja, A. Superomniphobic surfaces for effective chemical shielding. J. Am. Chem. Soc. 135, 578–581 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Lee, H., Lee, B. P. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338–341 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    N’Guessan, H. E. et al. Water tribology on graphene. Nat. Commun. 3, 1242 (2012).

    Article  Google Scholar 

  11. 11.

    Epstein, A. K., Wong, T.-S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA 109, 13182–13187 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Kota, A. K., Kwon, G., Choi, W., Mabry, J. M. & Tuteja, A. Hygro-responsive membranes for effective oil–water separation. Nat. Commun. 3, 1025 (2012).

    Article  Google Scholar 

  13. 13.

    Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Zheng, Y. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Timonen, J. V. I., Latikka, M., Leibler, L., Ras, R. H. A. & Ikkala, O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341, 253–257 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Bird, J. C., Dhiman, R., Kwon, H.-M. & Varanasi, K. K. Reducing the contact time of a bouncing drop. Nature 503, 385–388 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Kreder, M. J., Alvarenga, J., Kim, P. & Aizenberg, J. Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1, 15003 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Tuteja, A. et al. Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Liu, T. & Kim, C. J. Turning a surface superrepellent even to completely wetting liquids. Science 346, 1096–1100 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Deng, X., Mammen, L., Butt, H.-J. & Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2011).

    Article  Google Scholar 

  21. 21.

    Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Azimi, G., Dhiman, R., Kwon, H.-M., Paxson, A. T. & Varanasi, K. K. Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315–320 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Richardson, J. J., Björnmalm, M. & Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

    Article  Google Scholar 

  24. 24.

    Steele, A., Bayer, I. & Loth, E. Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett. 9, 501–505 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Zhang, J. & Seeger, S. Superoleophobic coatings with ultralow sliding angles based on silicone nanofilaments. Angew. Chem. Int. Ed. 50, 6652–6656 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  27. 27.

    Tian, X., Verho, T. & Ras, R. H. A. Moving superhydrophobic surfaces toward real-world applications. Science 352, 142–143 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Pan, S., Guo, R. & Xu, W. Durable superoleophobic fabric surfaces with counterintuitive superwettability for polar solvents. AIChE J. 60, 2752–2756 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Yao, X. et al. Adaptive fluid-infused porous films with tunable transparency and wettability. Nat. Mater. 12, 529–534 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Wong, W. S. Y. et al. Omnidirectional self-assembly of transparent superoleophobic nanotextures. ACS Nano 11, 587–596 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Xu, Z., Zhao, Y., Wang, H., Wang, X. & Lin, T. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil–water separation. Angew. Chem. Int. Ed. 54, 4527–4530 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    CAS  Article  Google Scholar 

  33. 33.

    Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    CAS  Article  Google Scholar 

  34. 34.

    Bormashenko, E., Pogreb, R., Balter, S. & Aurbach, D. Electrically controlled membranes exploiting Cassie–Wenzel wetting transitions. Sci. Rep. 3, 3028 (2013).

    Article  Google Scholar 

  35. 35.

    Hao, C. et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nat. Commun. 6, 7986 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Jung, S., Tiwari, M. K., Doan, N. V. & Poulikakos, D. Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012).

    Article  Google Scholar 

  37. 37.

    Golovin, K. et al. Designing durable icephobic surfaces. Sci. Adv. 2, e1501496 (2016).

    Article  Google Scholar 

  38. 38.

    Campos, R. et al. Superoleophobic surfaces through control of sprayed-on stochastic topography. Langmuir 28, 9834–9841 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Golovin, K., Lee, D. H., Mabry, J. M. & Tuteja, A. Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis. Angew. Chem. Int. Ed. 52, 13007–13011 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Srinivasan, S., Chhatre, S. S., Mabry, J. M., Cohen, R. E. & McKinley, G. H. Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 52, 3209–3218 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Grigoryev, A., Tokarev, I., Kornev, K. G., Luzinov, I. & Minko, S. Superomniphobic magnetic microtextures with remote wetting control. J. Am. Chem. Soc. 134, 12916–12919 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    Kota, A. K., Li, Y., Mabry, J. M. & Tuteja, A. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Adv. Mater. 24, 5838–5843 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Verho, T. et al. Reversible switching between superhydrophobic states on a hierarchically structured surface. Proc. Natl Acad. Sci. USA 109, 10210–10213 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Herminghaus, S. Roughness-induced non-wetting. Europhys. Lett. 52, 165–170 (2000).

    Article  Google Scholar 

  45. 45.

    Kleingartner, J. A. et al. Designing robust hierarchically textured oleophobic fabrics. Langmuir 31, 13201–13213 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Mazumder, P. et al. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures. Nano Lett. 14, 4677–4681 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Jung, Y. C. & Bhushan, B. Mechanically durable carbon nanotube−composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. ACS Nano 3, 4155–4163 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Tuteja, A., Choi, W., McKinley, G. H., Cohen, R. E. & Rubner, M. F. Design parameters for superhydrophobicity and superoleophobicity. MRS Bull. 33, 752–758 (2008).

    CAS  Article  Google Scholar 

  49. 49.

    de Ruiter, J., Lagraauw, R., van den Ende, D. & Mugele, F. Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11, 48–53 (2014).

    Article  Google Scholar 

  50. 50.

    Qian, J. & Law, C. K. Regimes of coalescence and separation in droplet collision. ‎J. Fluid Mech. 331, 59–80 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was conducted jointly and funded by the National Natural Science Foundation of China (NSFC grant nos 51703056, 21707031, 21606081, 21527810, 21521063, 21575036, 21307029, 21221003, 21205034 and 21190041), National Key Basic Research Program (project no. 2011CB911000), China Postdoctoral Science Foundation (project no. 2016M602402), China Scholarship Council (file no. 201606130022), Natural Science Foundation of Hunan Province of China (project no. 2018JJ3028), Horizon 2020/European Union (grant agreement no. 745676), Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology (project no. CE140100036) and the ARC under the Australian Laureate Fellowship scheme (grant no. FL120100030).

Author information

Affiliations

Authors

Contributions

R.G. and S.P. conceived the ideas and, with the help of W.X., J.J. and F.C., designed and conducted the experiments, and analysed the data. All the authors discussed and interpreted the results and contributed to the writing of the paper.

Corresponding authors

Correspondence to Shuaijun Pan or Weijian Xu or Jianhui Jiang or Frank Caruso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Video Legends 1–26, Supplementary Figures 1–36, Supplementary Tables 1–3, Supplementary References 1–31

Supplementary Video 1

Hexane drop bouncing on a planar superomniphobic (SOP) substrate

Supplementary Video 2

Pentane drop rolls off a SOP slope of 18°

Supplementary Video 3

Pentane drop rolls off a SOP slope of 37°

Supplementary Video 4

Pentane drop bounces on a SOP woven fabric (low Weber number)

Supplementary Video 5

Pentane drop breaks through the facial SOP coating (medium Weber number)

Supplementary Video 6

Pentane drop bounces on a full SOP coating (medium Weber number)

Supplementary Video 7

Jumping satellite drop of pentane (high Weber number)

Supplementary Video 8

Coalescence of extruded satellite drops of pentane (higher Weber number)

Supplementary Video 9

Continuous impacting of pentane jet

Supplementary Video 10

Bouncing of HF on coated TLC plate

Supplementary Video 11

Bouncing of PVDF solution

Supplementary Video 12

Bouncing of FC-72 at high temperatures

Supplementary Video 13

Bouncing of FC-72 at high atmospheres

Supplementary Video 14

Impact of liquid nitrogen droplet on a coated TLC plate

Supplementary Video 15

Rolling off liquid nitrogen filament on a coated TLC plate

Supplementary Video 16

Impact of liquid nitrogen droplet on a coated print paper

Supplementary Video 17

Wetting of liquid nitrogen on an uncoated TLC plate

Supplementary Video 18

Freezing of water on a five-tier substrate

Supplementary Video 19

Freezing of water on a four-tier substrate

Supplementary Video 20

Freezing of water on a three-tier (microstructure) substrate

Supplementary Video 21

Freezing of water on a three-tier (nanostructure) substrate

Supplementary Video 22

Freezing of water on a two-tier substrate

Supplementary Video 23

Freezing of water on a one-tier (control) substrate

Supplementary Video 24

Impinging water drop on a −20 °C SOP substrate (We = 3)

Supplementary Video 25

Reduced contact time of water droplet with a −20 °C SOP substrate (We = 60)

Supplementary Video 26

Scratch durability testing

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Guo, R., Björnmalm, M. et al. Coatings super-repellent to ultralow surface tension liquids. Nature Mater 17, 1040–1047 (2018). https://doi.org/10.1038/s41563-018-0178-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing