Abstract
Various natural materials have hierarchical microscale and nanoscale structures that allow for directional water transport. Here we report an ultrafast water transport process in the surface of a Sarracenia trichome, whose transport velocity is about three orders of magnitude faster than those measured in cactus spine and spider silk. The high velocity of water transport is attributed to the unique hierarchical microchannel organization of the trichome. Two types of ribs with different height regularly distribute around the trichome cone, where two neighbouring high ribs form a large channel that contains 1–5 low ribs that define smaller base channels. This results in two successive but distinct modes of water transport. Initially, a rapid thin film of water is formed inside the base channels (Mode I), which is followed by ultrafast water sliding on top of that thin film (Mode II). This two-step ultrafast water transport mechanism is modelled and experimentally tested in bio-inspired microchannels, which demonstrates the potential of this hierarchal design for microfluidic applications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Low friction of superslippery and superlubricity: A review
Friction Open Access 10 August 2022
-
Nature-inspired materials: Emerging trends and prospects
NPG Asia Materials Open Access 30 July 2021
-
All-day fresh water harvesting by microstructured hydrogel membranes
Nature Communications Open Access 14 May 2021
Access options
Subscribe to Nature+
Get immediate online access to Nature and 55 other Nature journal
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
References
Lorenceau, E. & Quere, D. Drops on a conical wire. J. Fluid. Mech. 510, 29–45 (2004).
Wong, T. S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).
Park, K. C. et al. Condensation on slippery asymmetric bumps. Nature 531, 78–82 (2016).
Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).
Zheng, Y. M. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).
Chen, H. W. et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85–89 (2016).
Ju, J. et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 3, 1247 (2012).
Malik, F. T., Clement, R. M., Gethin, D. T., Krawszik, W. & Parker, A. R. Nature’s moisture harvesters: a comparative review. Bioinspir. Biomim. 9, 3 (2014).
Liu, C. C., Xue, Y., Chen, Y. & Zheng, Y. M. Effective directional self-gathering of drops on spine of cactus with splayed capillary arrays. Sci. Rep. 5, 17757 (2015).
Guo, L. & Tang, G. H. Experimental study on directional motion of a single droplet on cactus spines. Int. J. Heat Mass Tran. 84, 198–202 (2015).
Cao, M. Y. et al. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv. Funct. Mater. 24, 3235–3240 (2014).
Ju, J. et al. Cactus stem inspired cone-arrayed surfaces for efficient fog collection. Adv. Funct. Mater. 24, 6933–6938 (2014).
Tian, Y. et al. Large-scale water collection of bioinspired cavity-microfibers. Nat. Commun. 8, 1080 (2017).
Yu, C. M. et al. Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles. Adv. Funct. Mater. 26, 6830–6835 (2016).
Li, K. et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun. 4, 2276 (2013).
Vorobyev, A. Y. & Guo, C. L. Water sprints uphill on glass. J. Appl. Phys. 108, 123512 (2010).
Soto, D., Lagubeau, G., Clanet, C. & Quere, D. Surfing on a herringbone. Phys. Rev. Fluids 1, 013902 (2016).
Zellmer, A. J., Hanes, M. M., Hird, S. M. & Carstens, B. C. Deep phylogeographic structure and environmental differentiation in the carnivorous plant Sarracenia alata. Syst. Biol. 61, 763–777 (2012).
Ellison, A. M. et al. Phylogeny and biogeography of the carnivorous plant family Sarraceniaceae. PLoS ONE 7, e39291 (2012).
Srivastava, A., Rogers, W. L., Breton, C. M., Cai, L. M. & Malmberg, R. L. Transcriptome analysis of Sarracenia, an insectivorous plant. DNA Res. 18, 253–261 (2011).
Gan, Y., Chen, H. W., Ran, T., Zhang, P. F. & Zhang, D. Y. The prey capture mechanism of micro structure on the Sarracenia Judith Hindle inner surface. J. Bionic. Eng. 15, 34–41 (2018).
Chen, H. W. et al. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata. Small. 13, 1601676 (2017).
Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Nanoimprint lithography. J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
Jain, K., Klosner, M., Zemel, M. & Raghunandan, S. Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc. IEEE 93, 1500–1510 (2005).
Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. Y. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
Quéré, D. Thin films flowing on vertical fibers. Europhys. Lett. 13, 721–726 (1990).
Doi, M. Soft Matter Physics (Oxford Univ. Press, Oxford, 2013).
Lucas, R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Colloid Polym. Sci. 23, 15–22 (1918).
Ransohoff, T. C. & Radke, C. J. Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore. J. Colloid Interface Sci. 121, 392–401 (1988).
Washburn, E. W. The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921).
Thoroddsen, S. T. & Takehara, K. The coalescence cascade of a drop. Phys. Fluids 12, 1265–1267 (2000).
Vinogradova, O. I. Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11, 2213–2220 (1995).
Bocquet, L. & Barrat, J. L. Flow boundary conditions from nano- to micro-scales. Soft Matter 3, 685–693 (2007).
Schonecker, C. & Hardt, S. Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J. Fluid. Mech. 717, 376–394 (2013).
Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures. Phys. Rev. E 90, 043017 (2014).
Krynicki, K., Green, C. D. & Sawyer, D. W. Pressure and temperature dependence of self-diffusion in water. Faraday Discuss. Chem. Soc. 66, 199–208 (1978).
Acknowledgements
We thank the National Science Fund for Distinguished Young Scholars (grant no. 51725501) and the Key Project (grant no. 21431009), and the fund for the 111 Project (grant no. B14009). We also thank M. Li, G. Wang and Y. Lai from the National Natural Science Foundation of China for their support and helpful discussions.
Author information
Authors and Affiliations
Contributions
H.C. and T.R. performed the experiments. H.C. and T.R. worked on the water transport and characterization of the trichome surface of Sarracenia. H.C., J.Z. and T.R. worked on the investigation of the theoretical model. H.C., T.R. and Y.Z. worked on the fabrication of the artificial biomimetic surface. H.C., T.R., Y.G., Y.Z., D.Z. and L.J. collected and analysed the data and proposed the mechanism for water transport on the peristome surface. H.C., T.R. and L.J. wrote the text. H.C. conceived the project and designed the experiments.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Video legends 1–9, Supplementary Notes 1–4, Supplementary Figures 1–10 and Supplementary Tables 1–2
Supplementary Video 1
Water transport of real trichome in Mode-I
Supplementary Video 2
Water transport of real trichome in Mode-II
Supplementary Video 3
Partial enlarged water transport of real trichome in Mode-II
Supplementary Video 4
Water transport of SBS replica
Supplementary Video 5
Water transport of smooth SBS trichome replica
Supplementary Video 6
Fluorescent movie of water transport Mode-I in hierarchical microchannels
Supplementary Video 7
Top major filling in Mode-I and succeeding transport in Mode-II
Supplementary Video 8
Water transport Mode-II in hierarchical microchannels and smooth microchannels
Supplementary Video 9
Dimethyl silicone oil transport in hierarchical microchannels
Rights and permissions
About this article
Cite this article
Chen, H., Ran, T., Gan, Y. et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nature Mater 17, 935–942 (2018). https://doi.org/10.1038/s41563-018-0171-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-018-0171-9
This article is cited by
-
Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces
Nano Research (2022)
-
Low friction of superslippery and superlubricity: A review
Friction (2022)
-
Bioinspired directional liquid transport induced by the corner effect
Nano Research (2022)
-
Nature-inspired materials: Emerging trends and prospects
NPG Asia Materials (2021)
-
An on-demand plant-based actuator created using conformable electrodes
Nature Electronics (2021)