Ultrafast water harvesting and transport in hierarchical microchannels

Abstract

Various natural materials have hierarchical microscale and nanoscale structures that allow for directional water transport. Here we report an ultrafast water transport process in the surface of a Sarracenia trichome, whose transport velocity is about three orders of magnitude faster than those measured in cactus spine and spider silk. The high velocity of water transport is attributed to the unique hierarchical microchannel organization of the trichome. Two types of ribs with different height regularly distribute around the trichome cone, where two neighbouring high ribs form a large channel that contains 1–5 low ribs that define smaller base channels. This results in two successive but distinct modes of water transport. Initially, a rapid thin film of water is formed inside the base channels (Mode I), which is followed by ultrafast water sliding on top of that thin film (Mode II). This two-step ultrafast water transport mechanism is modelled and experimentally tested in bio-inspired microchannels, which demonstrates the potential of this hierarchal design for microfluidic applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: In situ optical microscope images of the Sarracenia trichome and its water transport process.
Fig. 2: Appearance and surface structure of the Sarracenia trichome.
Fig. 3: Water transport process along various bio-inspired hierarchical microchannels.
Fig. 4: Mechanism of water transport in hierarchical microchannels and a real trichome.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Lorenceau, E. & Quere, D. Drops on a conical wire. J. Fluid. Mech. 510, 29–45 (2004).

    Article  Google Scholar 

  2. 2.

    Wong, T. S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Park, K. C. et al. Condensation on slippery asymmetric bumps. Nature 531, 78–82 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Zheng, Y. M. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Chen, H. W. et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85–89 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Ju, J. et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 3, 1247 (2012).

    Article  Google Scholar 

  8. 8.

    Malik, F. T., Clement, R. M., Gethin, D. T., Krawszik, W. & Parker, A. R. Nature’s moisture harvesters: a comparative review. Bioinspir. Biomim. 9, 3 (2014).

    Article  Google Scholar 

  9. 9.

    Liu, C. C., Xue, Y., Chen, Y. & Zheng, Y. M. Effective directional self-gathering of drops on spine of cactus with splayed capillary arrays. Sci. Rep. 5, 17757 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Guo, L. & Tang, G. H. Experimental study on directional motion of a single droplet on cactus spines. Int. J. Heat Mass Tran. 84, 198–202 (2015).

    Article  Google Scholar 

  11. 11.

    Cao, M. Y. et al. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv. Funct. Mater. 24, 3235–3240 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Ju, J. et al. Cactus stem inspired cone-arrayed surfaces for efficient fog collection. Adv. Funct. Mater. 24, 6933–6938 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Tian, Y. et al. Large-scale water collection of bioinspired cavity-microfibers. Nat. Commun. 8, 1080 (2017).

    Article  Google Scholar 

  14. 14.

    Yu, C. M. et al. Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles. Adv. Funct. Mater. 26, 6830–6835 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Li, K. et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun. 4, 2276 (2013).

    Article  Google Scholar 

  16. 16.

    Vorobyev, A. Y. & Guo, C. L. Water sprints uphill on glass. J. Appl. Phys. 108, 123512 (2010).

    Article  Google Scholar 

  17. 17.

    Soto, D., Lagubeau, G., Clanet, C. & Quere, D. Surfing on a herringbone. Phys. Rev. Fluids 1, 013902 (2016).

    Article  Google Scholar 

  18. 18.

    Zellmer, A. J., Hanes, M. M., Hird, S. M. & Carstens, B. C. Deep phylogeographic structure and environmental differentiation in the carnivorous plant Sarracenia alata. Syst. Biol. 61, 763–777 (2012).

    Article  Google Scholar 

  19. 19.

    Ellison, A. M. et al. Phylogeny and biogeography of the carnivorous plant family Sarraceniaceae. PLoS ONE 7, e39291 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Srivastava, A., Rogers, W. L., Breton, C. M., Cai, L. M. & Malmberg, R. L. Transcriptome analysis of Sarracenia, an insectivorous plant. DNA Res. 18, 253–261 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Gan, Y., Chen, H. W., Ran, T., Zhang, P. F. & Zhang, D. Y. The prey capture mechanism of micro structure on the Sarracenia Judith Hindle inner surface. J. Bionic. Eng. 15, 34–41 (2018).

    Article  Google Scholar 

  22. 22.

    Chen, H. W. et al. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata. Small. 13, 1601676 (2017).

    Article  Google Scholar 

  23. 23.

    Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Nanoimprint lithography. J. Vac. Sci. Technol. B 14, 4129–4133 (1996).

    CAS  Article  Google Scholar 

  24. 24.

    Jain, K., Klosner, M., Zemel, M. & Raghunandan, S. Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc. IEEE 93, 1500–1510 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. Y. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    Quéré, D. Thin films flowing on vertical fibers. Europhys. Lett. 13, 721–726 (1990).

    Article  Google Scholar 

  27. 27.

    Doi, M. Soft Matter Physics (Oxford Univ. Press, Oxford, 2013).

  28. 28.

    Lucas, R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Colloid Polym. Sci. 23, 15–22 (1918).

    CAS  Google Scholar 

  29. 29.

    Ransohoff, T. C. & Radke, C. J. Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore. J. Colloid Interface Sci. 121, 392–401 (1988).

    CAS  Article  Google Scholar 

  30. 30.

    Washburn, E. W. The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921).

    Article  Google Scholar 

  31. 31.

    Thoroddsen, S. T. & Takehara, K. The coalescence cascade of a drop. Phys. Fluids 12, 1265–1267 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    Vinogradova, O. I. Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11, 2213–2220 (1995).

    CAS  Article  Google Scholar 

  33. 33.

    Bocquet, L. & Barrat, J. L. Flow boundary conditions from nano- to micro-scales. Soft Matter 3, 685–693 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Schonecker, C. & Hardt, S. Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J. Fluid. Mech. 717, 376–394 (2013).

    Article  Google Scholar 

  35. 35.

    Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures. Phys. Rev. E 90, 043017 (2014).

    Article  Google Scholar 

  36. 36.

    Krynicki, K., Green, C. D. & Sawyer, D. W. Pressure and temperature dependence of self-diffusion in water. Faraday Discuss. Chem. Soc. 66, 199–208 (1978).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Science Fund for Distinguished Young Scholars (grant no. 51725501) and the Key Project (grant no. 21431009), and the fund for the 111 Project (grant no. B14009). We also thank M. Li, G. Wang and Y. Lai from the National Natural Science Foundation of China for their support and helpful discussions.

Author information

Affiliations

Authors

Contributions

H.C. and T.R. performed the experiments. H.C. and T.R. worked on the water transport and characterization of the trichome surface of Sarracenia. H.C., J.Z. and T.R. worked on the investigation of the theoretical model. H.C., T.R. and Y.Z. worked on the fabrication of the artificial biomimetic surface. H.C., T.R., Y.G., Y.Z., D.Z. and L.J. collected and analysed the data and proposed the mechanism for water transport on the peristome surface. H.C., T.R. and L.J. wrote the text. H.C. conceived the project and designed the experiments.

Corresponding authors

Correspondence to Huawei Chen or Lei Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video legends 1–9, Supplementary Notes 1–4, Supplementary Figures 1–10 and Supplementary Tables 1–2

Supplementary Video 1

Water transport of real trichome in Mode-I

Supplementary Video 2

Water transport of real trichome in Mode-II

Supplementary Video 3

Partial enlarged water transport of real trichome in Mode-II

Supplementary Video 4

Water transport of SBS replica

Supplementary Video 5

Water transport of smooth SBS trichome replica

Supplementary Video 6

Fluorescent movie of water transport Mode-I in hierarchical microchannels

Supplementary Video 7

Top major filling in Mode-I and succeeding transport in Mode-II

Supplementary Video 8

Water transport Mode-II in hierarchical microchannels and smooth microchannels

Supplementary Video 9

Dimethyl silicone oil transport in hierarchical microchannels

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Ran, T., Gan, Y. et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nature Mater 17, 935–942 (2018). https://doi.org/10.1038/s41563-018-0171-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing