Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large electrostrictive response in lead halide perovskites

A Publisher Correction to this article was published on 12 October 2018

This article has been updated

Abstract

Lead halide perovskites have demonstrated outstanding performance in photovoltaics, photodetectors, radiation detectors and light-emitting diodes. However, the electromechanical properties, which are the main application of inorganic perovskites, have rarely been explored for lead halide perovskites. Here, we report the discovery of a large electrostrictive response in methylammonium lead triiodide (MAPbI3) single crystals. Under an electric field of 3.7 V µm−1, MAPbI3 shows a large compressive strain of 1%, corresponding to a mechanical energy density of 0.74 J cm3, comparable to that of human muscles. The influences of piezoelectricity, thermal expansion, intrinsic electrostrictive effect, Maxwell stress, ferroelectricity, local polar fluctuation and methylammonium cation ordering on this electromechanical response are excluded. We speculate, using density functional theory, that electrostriction of MAPbI3 probably originates from lattice deformation due to formation of additional defects under applied bias. The discovery of large electrostriction in lead iodide perovskites may lead to new potential applications in actuators, sonar and micro-electromechanical systems and aid the understanding of other field-dependent material properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrostrictive response of MAPbI3 single crystal.
Fig. 2: Macroscopic measurement of electrostrictive response for MAPbI3 single crystal.
Fig. 3: Stability and response timescale of electrostriction.

Similar content being viewed by others

Data availability

The authors declare that all relevant data supporting the findings of this study are available within the paper and its Supplementary Information.

Change history

  • 12 October 2018

    In the version of this Article originally published, the y axis of Fig. 1c was incorrectly labelled ‘S (%)’; it should have been ‘–S (%)’. Also, the link for the Supplementary Video was missing from the online version of the Article. These errors have now been corrected.

References

  1. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  CAS  Google Scholar 

  2. NREL Best research-cell efficiencies. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg (accessed 16 July 2018).

  3. Fang, Y. & Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    Article  CAS  Google Scholar 

  4. Shen, L. et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28, 10794–10800 (2016).

    Article  CAS  Google Scholar 

  5. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  CAS  Google Scholar 

  6. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogeneous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    Article  CAS  Google Scholar 

  7. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    Article  CAS  Google Scholar 

  8. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article  CAS  Google Scholar 

  9. Xiao, Z. G. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  CAS  Google Scholar 

  10. Gautschi, G. Piezoelectric Sensorics (Springer, New York, 2002).

  11. Wang, X., Song, J., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007).

    Article  CAS  Google Scholar 

  12. Uchino, K. Piezoelectric Actuators and Ultrasonic Motors (Springer, New York, 1997).

  13. Bobnar, V. et al. Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3–SrTiO3 ceramic system. J. Appl. Phys. 98, 024113–024113 (2005).

    Article  Google Scholar 

  14. Wang, F. F., Jin, C. C., Yao, Q. R. & Shi, W. Z. Large electrostrictive effect in ternary Bi0.5Na0.5TiO3-based solid solutions. J. Appl. Phys. 114, 027004 (2013).

    Article  Google Scholar 

  15. Li, F., Jin, L. & Guo, R. High electrostrictive coefficient Q33 in lead-free Ba(Zr0. 2Ti0. 8)O3-x(Ba0. 7Ca0. 3)TiO3 piezoelectric ceramics. Appl. Phys. Lett. 105, 232903 (2014).

    Article  Google Scholar 

  16. Park, S. E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    Article  CAS  Google Scholar 

  17. Li, F., Jin, L., Xu, Z., Wang, D. & Zhang, S. Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. Appl. Phys. Lett. 102, 152910 (2013).

    Article  Google Scholar 

  18. Li, F., Xu, Z. & Zhang, S. The effect of polar nanoregions on electromechanical properties of relaxor-PbTiO3 crystals: extracting from electric-field-induced polarization and strain behaviors. Appl. Phys. Lett. 105, 122904 (2014).

    Article  Google Scholar 

  19. Baek, S. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    Article  CAS  Google Scholar 

  20. Li, F., Jin, L., Xu, Z. & Zhang, S. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).

    Article  Google Scholar 

  21. Zhang, Q. M., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    Article  CAS  Google Scholar 

  22. Xu, H. S. et al. Ferroelectric and electromechanical properties of poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360–2362 (2001).

    Article  CAS  Google Scholar 

  23. Bauer, F., Fousson, E. & Zhang, Q. M. Recent advances in highly electrostrictive P(VDF–TrFE–CFE) terpolymers. IEEE Trans. Dielectr. Electr. Insul. 13, 1149–1154 (2006).

    Article  CAS  Google Scholar 

  24. Zhang, Q. M. et al. An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002).

    Article  CAS  Google Scholar 

  25. Huang, C. & Zhang, Q. Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14, 501–506 (2004).

    Article  CAS  Google Scholar 

  26. Javadi, A., Xiao, Y., Xu, W. & Gong, S. Chemically modified graphene/P(VDF–TrFE–CFE) electroactive polymer nanocomposites with superior electromechanical performance. J. Mater. Chem. 22, 830–834 (2012).

    Article  CAS  Google Scholar 

  27. Le, M. Q. et al. All-organic electrostrictive polymer composites with low driving electrical voltages for micro-fluidic pump applications. Sci. Rep. 5, 11814 (2015).

    Article  Google Scholar 

  28. Chen, Z. et al. Single crystal perovskite solar cells with broadened light-harvesting spectrum. Nat. Commun. 8, 1890 (2017).

    Article  Google Scholar 

  29. Dong, Q. et al. Lateral-structure single-crystal hybrid perovskite solar cells via piezoelectric poling. Adv. Mater. 28, 2816–2821 (2016).

    Article  CAS  Google Scholar 

  30. Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2017).

    Article  Google Scholar 

  31. Mirfakhrai, T., Madden, J. D. W. & Baughman, R. H. Polymer artificial muscles. Mater. Today 10, 30–38 (2007).

    Article  CAS  Google Scholar 

  32. Cheng, C., Weissmüller, J. & Ngan, A. H. W. Fast and reversible actuation of metallic muscles composed of nickel nanowire-forest. Adv. Mater. 28, 5315–5321 (2016).

    Article  CAS  Google Scholar 

  33. Weissmüller, J. et al. Charge-induced reversible strain in a metal. Science 300, 312–315 (2003).

    Article  Google Scholar 

  34. Baughman, R. H. Playing nature’s game with artificial muscles. Science 308, 63–65 (2005).

    Article  CAS  Google Scholar 

  35. Liu, S., Zheng, F., Grinberg, I. & Rappe, A. M. Photoferroelectric and photopiezoelectric properties of organometal halide perovskites. J. Phys. Chem. Lett. 7, 1460–1465 (2016).

    Article  CAS  Google Scholar 

  36. Uchino, K. Ferroelectric Devices (Taylor and Francis, Boca Raton, 2010).

  37. Damjanovic, D. & Newnham, R. Electrostrictive and piezoelectric materials for actuator applications. J. Intell. Mater. Syst. Struct. 3, 190–208 (1992).

    Article  Google Scholar 

  38. Feng, J. Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014).

    Article  Google Scholar 

  39. Lin, Q. Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).

    Article  CAS  Google Scholar 

  40. Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

    Article  CAS  Google Scholar 

  41. Bakulin, A. A. et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015).

    Article  CAS  Google Scholar 

  42. Quarti, C., Mosconi, E. & De Angelis, F. Interplay of orientational order and electronic structure in methylammonium lead iodide: implications for solar cell operation. Chem. Mater. 26, 6557–6569 (2014).

    Article  CAS  Google Scholar 

  43. Wu, X. et al. Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites. Sci. Adv. 3, e1602388 (2017).

    Article  Google Scholar 

  44. Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    Article  Google Scholar 

  45. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. 127, 1811–1814 (2015).

    Article  Google Scholar 

  46. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  47. Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article  Google Scholar 

  48. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  Google Scholar 

  49. Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Office of Naval Research under award N00014-17-1-2727, the Department of Energy (DOE) under award DE-EE0006709 and the National Science Foundation (NSF) under awards DMR-1505535 and DMR-1420645. E.M. and F.D.A. acknowledge the project PERSEO—‘Perovskite-based Solar cells: towards high Efficiency and long-term stability’ (Bando PRIN 2015—Italian Ministry of University and Scientific Research (MIUR) Decreto Direttoriale 4 November 2015 no. 2488, project no. 20155LECAJ) for funding.

Author information

Authors and Affiliations

Authors

Contributions

J.H., B.C. and Q.D. conceived the idea. B.C. designed the experiments. T.L. and A.G. conducted the AFM measurements. Q.D., Z.C. and Y.L. grew the single crystal. E.M. and F.D.A. conducted the computational simulations. J.S. and S.D. performed Mach–Zehnder interferometer measurements. Y.D. carried out the XRD measurement. B.C., F.D.A. and J.H. wrote the paper, and all authors reviewed the paper.

Corresponding authors

Correspondence to Filippo De Angelis or Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–11, Supplementary Figures 1–16, Supplementary Tables 1–3 and Supplementary References 1–14

Supplementary Video 1

Electrostrictive response of MAPbI3 single crystal under alternative bias on and bias off through lateral electrode on the top surface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, T., Dong, Q. et al. Large electrostrictive response in lead halide perovskites. Nature Mater 17, 1020–1026 (2018). https://doi.org/10.1038/s41563-018-0170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0170-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing